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Motivation

Introduction

@ Problem: solve the linear system Ax = b
@ Some systems don't need to be solved with high accuracy
e e.g., in Al applications arriving quickly at a sufficiently good
answer is preferable to waiting longer for a highly accurate
answer
@ Asynchronous solvers gain prominence at the exascale and
heterogeneous systems
@ There are a number of papers that explore the feasibility of
using randomized linear solvers to achieve this goal:

o Leventhal and Lewis;! e Griebel and Oswald:2 e Avron,
Druinsky, and Gupta®

IDennis Leventhal and Adrian S Lewis. “Randomized methods for linear constraints: convergence rates and
conditioning”. In: Mathematics of Operations Research 35.3 (2010), pp. 641-654.

2Michael Griebel and Peter Oswald. “Greedy and randomized versions of the multiplicative Schwarz method”.
In: Linear Algebra and its Applications 437.7 (2012), pp. 1596-1610.

3Haim Avron, Alex Druinsky, and Anshul Gupta. “Revisiting asynchronous linear solvers: Provable convergence
rate through randomization”. In: Journal of the ACM (JACM) 62.6 (2015), p. 51.
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Motivation

Motivation

@ Wolfson-Pou and Chow* investigated a Southwell-like
approach for solving linear systems

Is there a way to combine the natural greediness of the Southwell
algorithm with the randomized asynchronous nature of the solvers
as proposed in [1-3]?

4 Jordi Wolfson-Pou and Edmond Chow. “Distributed Southwell: an iterative method with low communication
costs”. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. ACM. 2017, p. 48.
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Ideas Under Consideration

Setting the stage

@ Everything considered here is some variant of (block)
asynchronous Jacobi

@ Although these solvers have applications inside other solvers,
we focus on their ability to solve systems directly

@ First we will describe our approach and motivation then we
will go over some results and discuss paths forward
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Ideas Under Consideration

Randomized Gauss Seidel (from Avron et al)

Let A€ R"*" be SPD, b, xg € R", then perform iterative updates
based on:

° rp=>b—Ax;

o v; = dr;/d] Ad

® Xj1 =X +7dj
for some direction vectors dp, d1, ..., d,. If the d; are selected
using the distribution,

Pr(d; = &) = ai/ Tr(A) (1)

then,

Blly -3 < (1- o7 ) o= @)
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Ideas Under Consideration

Generic algorithm

1 for each processing element P; do

2 for i =1,2,... until convergence do

3 Pick a component j € {1,2,..., m} somehow
4 Read the corresponding entries of A, x, b

5 Perform the relaxation for equation x;

6 Update the data for x;

@ We want to make the component selection random and
dynamic
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Ideas Under Consideration

Residual data for finite-difference of 2D Laplacian
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(a) Unsorted residuals (b) Sorted residuals

Figure: Initial component residuals (r;/ max(r;)).
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Ideas Under Consideration

Ranked residual data for finite-difference of 2D Laplacian
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Ideas Under Consideration

Our approach

o Idea: Make the random selection change dynamically

@ Goal: Select the “right” residual components (similar to
classical Southwell) without the large computational overhead,
incurred in the Southwell by sorting and ranking after each
update

@ Relies on monitoring which (blocks of) residuals contribute
most to the residual: r = b — Ax

e Finds and ranks periodically the local/component residuals
(for the contribution of block 7): r; = b; — Ax;

e Can select a component using a non-uniform distribution that
favors components with higher local residual

Coleman & Sosonkina Randomized Asynchronous Linear Solvers



Ideas Under Consideration

Approaches towards making the component selection

@ Uniform distribution

@ Discrete (non-updated) distribution defined by the ratio of the
diagonal element to the trace

P(i = k) = —xk (3)

o “Greedy" selection® picks an element within a parameter
defined threshold of optimal in the Southwell sense

5Griebel and Oswald, “Greedy and randomized versions of the multiplicative Schwarz method"” .
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Ideas Under Consideration

Approaches towards making the component selection
(cont'd)

@ Discrete distribution defined by the ratio of the local residual
to the sum of all residuals

P(i = k) = Zrkrj (4)

@ Periodically fitting a continuous distribution to the (sorted)
local residuals and drawing random numbers from this
distribution

e Exponential
e Triangular
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Numerical Results

More motivation

@ The real question is: how much can this type of component
selection improve performance?

@ With important subquestion: how much overhead do you
introduce to make “better” selections?
@ Notes about results:

o “Uniform” here refers to a true uniform distribution

o Only a few results are shown in an attempt to just give the
flavor of results

Coleman & Sosonkina Randomized Asynchronous Linear Solvers



Numerical Results

Solver data (Laplacian)
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Figure: Residual (r/rp) progression for the first 10,000 iterations of four
stationary methods solving the 2D (a) and 3D (b) Laplacian.
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Numerical Results

Solver data (cont'd)

@ Shared memory experiments on a
—min ——mean node at Old Dominion University

@ 64 core Intel Xeon Phi

@ 2D discretization of the Laplacian
over an 800 x 800 grid

@ The distribution was updated every
5 iterations

@ Dashed red line represents the
performance of uniform selection
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Numerical Results

Approach: block methods

@ One of the next logical steps would be to look into the
extension of these ideas to block methods

@ Divide the domain into m subdomains,
Rn — Rnl X RnZ NEE .an, Where n—= Zi nj

@ Each time a block is selected it performs one or more internal
iterations of a stationary solver
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Notional block picture
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Numerical Results

Generic block algorithm

1 for each processing element P; do

2 for i =1,2,... until convergence do

3 Pick a block j € {1,2,..., m} somehow

4 Read the corresponding entries of A, x, b

5 Perform Jacobi or Gauss-Seidel relaxations for all

equations in block j
6 Update the data for block j

o Key: we're performing the dynamic selection on the blocks
themselves, and performing traditional iteration inside the
blocks
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Numerical Results

Dynamic block algorithm

@ Instead of dividing the domain into blocks as in the previous
image, we create blocks dynamically:

e Each thread selects a single row using our proposed selection
methodology to initialize

e Each update causes each thread to select a new single row
using the same methodology

e These two rows create a block inside which traditional updates
(e.g., Jacobi or Gauss-Seidel) are performed on all the
components of the two rows

@ Need to add locks to avoid multiple threads trying to write to
the same component
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Numerical Results

Solver data from Wahab
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(a) Traditional block implementation ~ (b) Dynamic block implementation

e Still single node, shared memory experiments (different
architecture: two Intel Xeon E5-2695 v3 14 core Haswell-EP
processors with 32 GB of DRAM)
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Summary & Path Forward

Summary

@ Dynamic non-uniform randomization provides a potential way
to improve the performance of asynchronous linear solvers

@ Moving forward, many questions need to be answered to
establish that it's an area worth pursuing

@ Initial results do suggest that there is potential for the method
to provide a modest improvement over existing techniques in
certain circumstances
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Moving forward

@ Questions:

e How does this extend to a distributed setting?

e How can we optimize some of these parameters based on
intrinsic properties of the matrix?

e Does the gain in performance overcome the extra
computational overhead?

@ Further investigation:
e Try incorporating new solvers into more complex existing
routines
o Keep experimenting with different distributions (still chosen
beforehand) and ranking methods and periodicities
e Try using an evolving probability distribution where the
parameters of distribution shift over time
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Questions?
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