# Dynamic Non-Uniform Randomization in Asynchronous Linear Solvers

### Evan Coleman<sup>1</sup> Masha Sosonkina<sup>2</sup>

<sup>1</sup>United States Department of Defense

<sup>2</sup>Old Dominion University

17<sup>th</sup> Copper Mountain Conference on Iterative Methods April 4–8, 2022

### Outline



- 2 Ideas Under Consideration
- **3** Numerical Results
- 4 Summary & Path Forward

### Outline



2 Ideas Under Consideration

3 Numerical Results

4 Summary & Path Forward

### Introduction

- Problem: solve the linear system Ax = b
- Some systems don't need to be solved with high accuracy
  - e.g., in AI applications arriving quickly at a sufficiently good answer is preferable to waiting longer for a highly accurate answer
- Asynchronous solvers gain prominence at the exascale and heterogeneous systems
- There are a number of papers that explore the feasibility of using randomized linear solvers to achieve this goal:
  - Leventhal and Lewis;<sup>1</sup> Griebel and Oswald;<sup>2</sup> Avron, Druinsky, and Gupta<sup>3</sup>

<sup>1</sup>Dennis Leventhal and Adrian S Lewis. "Randomized methods for linear constraints: convergence rates and conditioning". In: *Mathematics of Operations Research* 35.3 (2010), pp. 641–654.

<sup>2</sup>Michael Griebel and Peter Oswald. "Greedy and randomized versions of the multiplicative Schwarz method". In: *Linear Algebra and its Applications* 437.7 (2012), pp. 1596–1610.

<sup>3</sup>Haim Avron, Alex Druinsky, and Anshul Gupta. "Revisiting asynchronous linear solvers: Provable convergence rate through randomization". In: *Journal of the ACM (JACM)* 62.6 (2015), p. 51.

## Motivation

 Wolfson-Pou and Chow<sup>4</sup> investigated a Southwell-like approach for solving linear systems

#### Question:

Is there a way to combine the natural greediness of the Southwell algorithm with the randomized asynchronous nature of the solvers as proposed in [1-3]?

<sup>&</sup>lt;sup>4</sup> Jordi Wolfson-Pou and Edmond Chow. "Distributed Southwell: an iterative method with low communication costs". In: *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.* ACM. 2017, p. 48.

### Outline





3 Numerical Results



### Setting the stage

- Everything considered here is some variant of (block) asynchronous Jacobi
- Although these solvers have applications inside other solvers, we focus on their ability to solve systems directly
- First we will describe our approach and motivation then we will go over some results and discuss paths forward

### Randomized Gauss Seidel (from Avron et al)

Let  $A \in \mathcal{R}^{n \times n}$  be SPD,  $b, x_0 \in \mathcal{R}^n$ , then perform iterative updates based on:

- r<sub>0</sub> = b Ax<sub>j</sub>
   γ<sub>j</sub> = d<sub>j</sub><sup>T</sup>r<sub>j</sub>/d<sub>j</sub><sup>T</sup>Ad<sub>j</sub>
   x<sub>i+1</sub> = x<sub>i</sub> + γ<sub>i</sub>d<sub>i</sub>
- for some direction vectors  $d_0, d_1, \ldots, d_n$ . If the  $d_j$  are selected using the distribution,

$$Pr(d_j = e_i) = a_{ii}/Tr(A)$$
(1)

then,

$$\mathbb{E}[\|x_j - x\|_A^2] \le \left(1 - \frac{\lambda_{\min}}{Tr(A)}\right)^m \|x_0 - x^*\|_A^2$$
(2)

### Generic algorithm

| 1 | for each processing element $P_1$ do                       |
|---|------------------------------------------------------------|
| 2 | for $i = 1, 2, \ldots$ until convergence do                |
| 3 | Pick a component $j \in \{1, 2, \dots, m\}$ <u>somehow</u> |
| 4 | Read the corresponding entries of $A, x, b$                |
| 5 | Perform the relaxation for equation $x_i$                  |
| 6 | Update the data for $x_j$                                  |
|   |                                                            |

• We want to make the component selection random and dynamic

### Residual data for finite-difference of 2D Laplacian



### Ranked residual data for finite-difference of 2D Laplacian



Coleman & Sosonkina Randomized Asynchronous Linear Solvers

## Our approach

- Idea: Make the random selection change dynamically
- Goal: Select the "right" residual components (similar to classical Southwell) without the large computational overhead, incurred in the Southwell by sorting and ranking after each update
- Relies on monitoring which (blocks of) residuals contribute most to the residual: r = b Ax
- Finds and ranks periodically the local/component residuals (for the contribution of block *i*):  $r_i = b_i Ax_i$ 
  - Can select a component using a *non-uniform* distribution that favors components with higher local residual

### Approaches towards making the component selection

- Uniform distribution
- Discrete (non-updated) distribution defined by the ratio of the diagonal element to the trace

$$\mathbb{P}(i=k) = \frac{a_{kk}}{tr(A)}$$
(3)

• "Greedy" selection<sup>5</sup> picks an element within a parameter defined threshold of optimal in the Southwell sense

 $<sup>^5</sup>$ Griebel and Oswald, "Greedy and randomized versions of the multiplicative Schwarz method".

# Approaches towards making the component selection (cont'd)

• Discrete distribution defined by the ratio of the local residual to the sum of all residuals

$$\mathbb{P}(i=k) = \frac{r_k}{\sum_j r_j} \tag{4}$$

- Periodically fitting a continuous distribution to the (sorted) local residuals and drawing random numbers from this distribution
  - Exponential
  - Triangular

## Outline



- 2 Ideas Under Consideration
- 3 Numerical Results
- 4 Summary & Path Forward

### More motivation

- The real question is: how much can this type of component selection improve performance?
- With important subquestion: how much overhead do you introduce to make "better" selections?
- Notes about results:
  - "Uniform" here refers to a true uniform distribution
  - Only a few results are shown in an attempt to just give the flavor of results

## Solver data (Laplacian)



Figure: Residual  $(r/r_0)$  progression for the first 10,000 iterations of four stationary methods solving the 2D (a) and 3D (b) Laplacian.

### Solver data (cont'd)



- Shared memory experiments on a node at Old Dominion University
- 64 core Intel Xeon Phi
- 2D discretization of the Laplacian over an  $800 \times 800$  grid
- The distribution was updated every 5 iterations
- Dashed red line represents the performance of uniform selection

### Approach: block methods

- One of the next logical steps would be to look into the extension of these ideas to block methods
- Divide the domain into *m* subdomains,  $\mathbb{R}^n = \mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \cdots \mathbb{R}^{n_m}$ , where  $n = \sum_i n_i$
- Each time a block is selected it performs one or more internal iterations of a stationary solver

# Notional block picture



### Generic block algorithm

| 1 | for each processing element $P_l$ do                   |
|---|--------------------------------------------------------|
| 2 | for $i = 1, 2, \ldots$ until convergence do            |
| 3 | Pick a block $j \in \{1, 2, \dots, m\}$ <u>somehow</u> |
| 4 | Read the corresponding entries of $A, x, b$            |
| 5 | Perform Jacobi or Gauss-Seidel relaxations for all     |
|   | equations in block <i>j</i>                            |
| 6 | Update the data for block <i>j</i>                     |

• Key: we're performing the dynamic selection on the blocks themselves, and performing traditional iteration inside the blocks

## Dynamic block algorithm

- Instead of dividing the domain into blocks as in the previous image, we create blocks dynamically:
  - Each thread selects a single row using our proposed selection methodology to initialize
  - Each update causes each thread to select a new single row using the same methodology
  - These two rows create a block inside which traditional updates (e.g., Jacobi or Gauss-Seidel) are performed on all the components of the two rows
- Need to add locks to avoid multiple threads trying to write to the same component

### Solver data from Wahab



(a) Traditional block implementation

(b) Dynamic block implementation

 Still single node, shared memory experiments (different architecture: two Intel Xeon E5-2695 v3 14 core Haswell-EP processors with 32 GB of DRAM)

## Outline



- 2 Ideas Under Consideration
- 3 Numerical Results
- 4 Summary & Path Forward

# Summary

- Dynamic non-uniform randomization provides a potential way to improve the performance of asynchronous linear solvers
- Moving forward, many questions need to be answered to establish that it's an area worth pursuing
- Initial results do suggest that there is potential for the method to provide a modest improvement over existing techniques in certain circumstances

# Moving forward

- Questions:
  - How does this extend to a distributed setting?
  - How can we optimize some of these parameters based on intrinsic properties of the matrix?
  - Does the gain in performance overcome the extra computational overhead?
- Further investigation:
  - Try incorporating new solvers into more complex existing routines
  - Keep experimenting with different distributions (still chosen beforehand) and ranking methods and periodicities
  - Try using an evolving probability distribution where the parameters of distribution shift over time

### Questions?