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Introduction

Problem: solve the linear system Ax = b

Some systems don’t need to be solved with high accuracy

e.g., in AI applications arriving quickly at a sufficiently good
answer is preferable to waiting longer for a highly accurate
answer

Asynchronous solvers gain prominence at the exascale and
heterogeneous systems

There are a number of papers that explore the feasibility of
using randomized linear solvers to achieve this goal:

Leventhal and Lewis;1 • Griebel and Oswald;2 • Avron,
Druinsky, and Gupta3

1Dennis Leventhal and Adrian S Lewis. “Randomized methods for linear constraints: convergence rates and
conditioning”. In: Mathematics of Operations Research 35.3 (2010), pp. 641–654.

2Michael Griebel and Peter Oswald. “Greedy and randomized versions of the multiplicative Schwarz method”.
In: Linear Algebra and its Applications 437.7 (2012), pp. 1596–1610.

3Haim Avron, Alex Druinsky, and Anshul Gupta. “Revisiting asynchronous linear solvers: Provable convergence
rate through randomization”. In: Journal of the ACM (JACM) 62.6 (2015), p. 51.

Coleman & Sosonkina Randomized Asynchronous Linear Solvers



Motivation
Ideas Under Consideration

Numerical Results
Summary & Path Forward

Motivation

Wolfson-Pou and Chow4 investigated a Southwell-like
approach for solving linear systems

Question:

Is there a way to combine the natural greediness of the Southwell
algorithm with the randomized asynchronous nature of the solvers
as proposed in [1–3]?

4Jordi Wolfson-Pou and Edmond Chow. “Distributed Southwell: an iterative method with low communication
costs”. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. ACM. 2017, p. 48.
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Setting the stage

Everything considered here is some variant of (block)
asynchronous Jacobi

Although these solvers have applications inside other solvers,
we focus on their ability to solve systems directly

First we will describe our approach and motivation then we
will go over some results and discuss paths forward
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Randomized Gauss Seidel (from Avron et al)

Let A ∈ Rn×n be SPD, b, x0 ∈ Rn, then perform iterative updates
based on:

r0 = b − Axj

γj = dT
j rj/d

T
j Adj

xj+1 = xj + γjdj

for some direction vectors d0, d1, . . . , dn. If the dj are selected
using the distribution,

Pr(dj = ei ) = aii/Tr(A) (1)

then,

E[∥xj − x∥2A] ≤
(
1− λmin

Tr(A)

)m

∥x0 − x∗∥2A (2)
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Generic algorithm

1 for each processing element Pl do
2 for i = 1, 2, . . . until convergence do
3 Pick a component j ∈ {1, 2, . . . ,m} somehow
4 Read the corresponding entries of A, x , b
5 Perform the relaxation for equation xj
6 Update the data for xj

We want to make the component selection random and
dynamic

Coleman & Sosonkina Randomized Asynchronous Linear Solvers
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Residual data for finite-difference of 2D Laplacian
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(a) Unsorted residuals
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(b) Sorted residuals

Figure: Initial component residuals (ri/max(ri )).
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Ranked residual data for finite-difference of 2D Laplacian
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(a) Sorted Residuals, exponential distributions
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Our approach

Idea: Make the random selection change dynamically

Goal: Select the “right” residual components (similar to
classical Southwell) without the large computational overhead,
incurred in the Southwell by sorting and ranking after each
update

Relies on monitoring which (blocks of) residuals contribute
most to the residual: r = b − Ax

Finds and ranks periodically the local/component residuals
(for the contribution of block i): ri = bi − Axi

Can select a component using a non-uniform distribution that
favors components with higher local residual
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Approaches towards making the component selection

Uniform distribution

Discrete (non-updated) distribution defined by the ratio of the
diagonal element to the trace

P(i = k) =
akk
tr(A)

(3)

“Greedy” selection5 picks an element within a parameter
defined threshold of optimal in the Southwell sense

5Griebel and Oswald, “Greedy and randomized versions of the multiplicative Schwarz method”.
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Approaches towards making the component selection
(cont’d)

Discrete distribution defined by the ratio of the local residual
to the sum of all residuals

P(i = k) =
rk∑
j rj

(4)

Periodically fitting a continuous distribution to the (sorted)
local residuals and drawing random numbers from this
distribution

Exponential
Triangular
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More motivation

The real question is: how much can this type of component
selection improve performance?

With important subquestion: how much overhead do you
introduce to make “better” selections?

Notes about results:

“Uniform” here refers to a true uniform distribution
Only a few results are shown in an attempt to just give the
flavor of results
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Solver data (Laplacian)
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(b) 2D problem (5-pt stencil,
10× 10 grid)
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(c) 3D problem (27-pt stencil,
10× 10× 10 grid)

Figure: Residual (r/r0) progression for the first 10,000 iterations of four
stationary methods solving the 2D (a) and 3D (b) Laplacian.
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Solver data (cont’d)
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Shared memory experiments on a
node at Old Dominion University

64 core Intel Xeon Phi

2D discretization of the Laplacian
over an 800× 800 grid

The distribution was updated every
5 iterations

Dashed red line represents the
performance of uniform selection
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Approach: block methods

One of the next logical steps would be to look into the
extension of these ideas to block methods

Divide the domain into m subdomains,
Rn = Rn1 × Rn2 × · · ·Rnm , where n =

∑
i ni

Each time a block is selected it performs one or more internal
iterations of a stationary solver
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Notional block picture
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Generic block algorithm

1 for each processing element Pl do
2 for i = 1, 2, . . . until convergence do
3 Pick a block j ∈ {1, 2, . . . ,m} somehow
4 Read the corresponding entries of A, x , b
5 Perform Jacobi or Gauss-Seidel relaxations for all

equations in block j
6 Update the data for block j

Key: we’re performing the dynamic selection on the blocks
themselves, and performing traditional iteration inside the
blocks
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Dynamic block algorithm

Instead of dividing the domain into blocks as in the previous
image, we create blocks dynamically:

Each thread selects a single row using our proposed selection
methodology to initialize
Each update causes each thread to select a new single row
using the same methodology
These two rows create a block inside which traditional updates
(e.g., Jacobi or Gauss-Seidel) are performed on all the
components of the two rows

Need to add locks to avoid multiple threads trying to write to
the same component
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Solver data from Wahab
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(a) Traditional block implementation
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(b) Dynamic block implementation

Still single node, shared memory experiments (different
architecture: two Intel Xeon E5-2695 v3 14 core Haswell-EP
processors with 32 GB of DRAM)
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Summary

Dynamic non-uniform randomization provides a potential way
to improve the performance of asynchronous linear solvers

Moving forward, many questions need to be answered to
establish that it’s an area worth pursuing

Initial results do suggest that there is potential for the method
to provide a modest improvement over existing techniques in
certain circumstances
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Moving forward

Questions:

How does this extend to a distributed setting?
How can we optimize some of these parameters based on
intrinsic properties of the matrix?
Does the gain in performance overcome the extra
computational overhead?

Further investigation:

Try incorporating new solvers into more complex existing
routines
Keep experimenting with different distributions (still chosen
beforehand) and ranking methods and periodicities
Try using an evolving probability distribution where the
parameters of distribution shift over time
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Questions?
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