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Fine-Grained Parallel Incomplete LU Factorization

Fine-Grained Parallel Incomplete LU (FGPILU) Factorization

Given a sparse matrix, A, compute factors L and U such that,

A ≈ LU (1)

Define the sparsity pattern as,

S = {(i , j)|lij 6= 0oruij 6= 0} (2)

Chow and Patel make the observation that,

(LU)ij = aij (3)

for (i , j) ∈ S
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A ≈ LU (1)

Define the sparsity pattern as,

S = {(i , j)|lij 6= 0oruij 6= 0} (2)

Chow and Patel1 make the observation that,

(LU)ij = aij (3)

for (i , j) ∈ S
1Edmond Chow and Aftab Patel. “Fine-grained parallel incomplete LU factorization”. In: SIAM journal on

Scientific Computing 37.2 (2015), pp. C169–C193.
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Fine-Grained Parallel Incomplete LU Factorization

Fine-Grained Parallel Incomplete LU (FGPILU) Factorization

This allows for the components of the L and U factors to be
solved for iteratively, in place of using a traditional Gaussian
elimination style approach.

To do this, we make use of the constraint,

min(i ,j)∑
k=1

likukj = aij (4)

for (i , j) ∈ S . This gives |S | unknowns and |S | constraints.
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Fine-Grained Parallel Incomplete LU Factorization

Fine-Grained Parallel Incomplete LU (FGPILU) Factorization

This leads to two nonlinear equations:

1 lij = 1
ujj

(
aij −

∑j−1
k=1 likukj

)
,

2 uij = aij −
∑i−1

k=1 likukj .

These equations can be used to find the lij and uij
components of L and U via a fixed point iteration,

xk+1 = G (xk) (5)

where G captures the two equations above and an initial
guess x0 is supplied.

This allows a higher degree of parallelism where all of the
components can be updated in parallel.
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Fine-Grained Parallel Incomplete LU Factorization

Convergence of the FGPILU Factorization

Convergence of nonlinear fixed point iterations is related to
both the spectral radius and norm of the associated Jacobian
matrix.

In order to define the Jacobian, an ordering of the elements in
both L and U needs to be defined. Let g(i , j) be an ordering
that takes every index in L and U and maps it to
1, 2, 3, . . . , (nnz(L) + nnz(U))

This allows the two nonlinear equations to be rewritten such
that the fixed point iteration becomes,

Gg(i ,j) =


1

xg(j,j)

(
aij −

∑
1≤k≤j−1

xg(i ,k)xg(k,j)

)
i > j

aij −
∑

1≤k≤i−1

xg(i ,k)xg(k,j) i ≤ j ,
(6)
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Fine-Grained Parallel Incomplete LU Factorization

FGPILU Jacobian

The Jacobian itself is defined by the following equations:

∂Gg(i,j)

∂xg(k,j)
= −

xg(i,k)

xg(j,j)
, k < j

∂Gg(i,j)

∂xg(i,k)
= −xg(i,k), k < i

∂Gg(i,j)

∂xg(i,k)
= −

xg(k,j)

xg(j,j)
, k < j

∂Gg(i,j)

∂xg(k,j)
= −xg(i,k), k < i

∂Gg(i,j)

∂xg(j,j)
= − 1

x2
g(j,j)

(
aij −

j−1∑
k=1

xg(i,k)xg(k,j)

)

Equations in the left column are for a row in the Jacobian
where i > j (lij ∈ L), and equations in the right column for a
row i ≤ j (uij ∈ U).
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Fine-Grained Parallel Incomplete LU Factorization

Fine-grained Methods

Overview of fine-grained methods:

Can operate in synchronous environments or asynchronous
environments
May be better suited for computation on accelerators (i.e.
GPUs)
Allows for component level checking on accuracy of solution
and existence of faults

Outline of goals for fine-grained methods:

Each component (or block of components) can be treated as a
task
It is able to be assigned to any given processor
Each processor should be able to complete its current task
without receiving new information from other processors
Information (possibly stale) may be required concerning the
state of other components
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Fine-Grained Parallel Incomplete LU Factorization

Fine-Grained Fixed-Point Iteration

The fixed point iteration x = G (x) can be broken into the
individual component functionals gi (x) that update each
element of x where x = G (x) = (g1(x), g2(x), · · · , gn(x)):

x1 = g1(x1, x2, x3, · · · , xn)

x2 = g2(x1, x2, x3, · · · , xn)

x3 = g3(x1, x2, x3, · · · , xn)

...

xn = gn(x1, x2, x3, · · · , xn)

In the synchronous case, all updates gi (x) use the same values
for xi ∈ x , whereas in the asynchronous case each call to a gi
uses the latest values of xi that are available.

Note: each gi may be responsible for updating a single
element, or a block of elements.

Coleman HPC’18 11/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Fine-Grained Parallel Incomplete LU Factorization

Fine-Grained Fixed-Point Iteration

The fixed point iteration x = G (x) can be broken into the
individual component functionals gi (x) that update each
element of x where x = G (x) = (g1(x), g2(x), · · · , gn(x)):

x1 = g1(x1, x2, x3, · · · , xn)

x2 = g2(x1, x2, x3, · · · , xn)

x3 = g3(x1, x2, x3, · · · , xn)

...

xn = gn(x1, x2, x3, · · · , xn)

In the synchronous case, all updates gi (x) use the same values
for xi ∈ x , whereas in the asynchronous case each call to a gi
uses the latest values of xi that are available.

Note: each gi may be responsible for updating a single
element, or a block of elements.

Coleman HPC’18 11/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

Outline

1 Overview
Fine-Grained Parallel Incomplete LU Factorization

2 Convergence and Resilience
Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

3 Numerical Results
Set Up
Convergence Results
Resilience Results

4 Future Directions

Coleman HPC’18 12/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

FGPILU Convergence

Local convergence is guaranteed in both the synchronous and
asynchronous case if the spectral radius, ρ, satisfies
ρ(|G ′(x∗)|) < 1 where x∗ is the fixed point of G and G ′

represents the Jacobian of G

Given a Gaussian elimination style ordering, G ′(x) has zeros
on the diagonal and therefore a spectral radius of 0 for any x

This gives local convergence trivially
Global convergence results exist, but are not practically helpful
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2Chow and Patel, “Fine-grained parallel incomplete LU factorization”.
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Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

Convergence of the FGPILU Algorithm

The goal is to increase both the ability of the FGPILU fixed
point iteration to converge, and to increase the rate at which
it does.

The partial derivatives in the Jacobian suggest that increasing
the diagonal dominance of the matrix will improve the
convergence of the FGPILU algorithm.

Two main tracks of ideas:

Reordering the original input matrix, recovering the solution
after preconditioning, and solving the preconditioned linear
system.
Applying the preconditioning algorithm to a modified matrix
with artificially increased diagonal dominance and using the
resultant preconditioner on the original matrix.

Coleman HPC’18 14/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

Convergence of the FGPILU Algorithm

The goal is to increase both the ability of the FGPILU fixed
point iteration to converge, and to increase the rate at which
it does.

The partial derivatives in the Jacobian suggest that increasing
the diagonal dominance of the matrix will improve the
convergence of the FGPILU algorithm.

Two main tracks of ideas:

Reordering the original input matrix, recovering the solution
after preconditioning, and solving the preconditioned linear
system.
Applying the preconditioning algorithm to a modified matrix
with artificially increased diagonal dominance and using the
resultant preconditioner on the original matrix.

Coleman HPC’18 14/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

Convergence of the FGPILU Algorithm

The goal is to increase both the ability of the FGPILU fixed
point iteration to converge, and to increase the rate at which
it does.

The partial derivatives in the Jacobian suggest that increasing
the diagonal dominance of the matrix will improve the
convergence of the FGPILU algorithm.

Two main tracks of ideas:

Reordering the original input matrix, recovering the solution
after preconditioning, and solving the preconditioned linear
system.

Applying the preconditioning algorithm to a modified matrix
with artificially increased diagonal dominance and using the
resultant preconditioner on the original matrix.

Coleman HPC’18 14/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Examining the Convergence of the FGPILU Algorithm
Soft Fault Resilience

Convergence of the FGPILU Algorithm

The goal is to increase both the ability of the FGPILU fixed
point iteration to converge, and to increase the rate at which
it does.

The partial derivatives in the Jacobian suggest that increasing
the diagonal dominance of the matrix will improve the
convergence of the FGPILU algorithm.

Two main tracks of ideas:

Reordering the original input matrix, recovering the solution
after preconditioning, and solving the preconditioned linear
system.
Applying the preconditioning algorithm to a modified matrix
with artificially increased diagonal dominance and using the
resultant preconditioner on the original matrix.

Coleman HPC’18 14/38



Overview
Convergence and Resilience

Numerical Results
Future Directions
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Soft Fault Resilience

Matrix Reorderings

Four reorderings were used:

1 Natural ordering

No changes to the ordering of the elements in the matrix

2 Reverse Cuthill-McKee

Designed to reduce the bandwidth of the matrix

3 Approximate Minimum Degree

Designed to reduce the number of non-zeros in the complete
factorization for symmetric matrices; observed to have
beneficial effects with incomplete LU factorizations for
non-symmetric problems

4 MC64

Designed to permute the largest entries in the matrix to the
diagonal
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3 Approximate Minimum Degree
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factorization for symmetric matrices; observed to have
beneficial effects with incomplete LU factorizations for
non-symmetric problems3

4 MC64

Designed to permute the largest entries in the matrix to the
diagonal

3Chow and Patel, “Fine-grained parallel incomplete LU factorization”; Michele Benzi, John C Haws, and
Miroslav Tuma. “Preconditioning highly indefinite and nonsymmetric matrices”. In: SIAM Journal on Scientific
Computing 22.4 (2000), pp. 1333–1353.
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non-symmetric problems3
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Designed to permute the largest entries in the matrix to the
diagonal

3Chow and Patel, “Fine-grained parallel incomplete LU factorization”; Benzi, Haws, and Tuma,
“Preconditioning highly indefinite and nonsymmetric matrices”.

4Iain S Duff and Jacko Koster. “On algorithms for permuting large entries to the diagonal of a sparse matrix”.
In: SIAM Journal on Matrix Analysis and Applications 22.4 (2001), pp. 973–996.
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Example of the effect of reordering

Figure: The sparsity pattern for the ‘fs 760 3’ matrix with the natural
ordering (left), and the RCM ordering (right)
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Example of the effect of reordering

Figure: The sparsity pattern for the ‘fs 760 3’ matrix with the natural
ordering (left), and the AMD ordering (right)
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Figure: The sparsity pattern for the ‘fs 760 3’ matrix with the natural
ordering (left), and the MC64 ordering (right)
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Increased diagonal dominance

Diagonal dominance can be increased by using an α-shift5.
The original matrix, A, can be written,

A = D − B (7)

where D contains all of the diagonal elements, and B contains
all other elements from A.

Instead of performing the incomplete LU factorization on the
original matrix A, the factorization is applied to the matrix,

Â = (1 + α)D − B (8)

5Thomas A Manteuffel. “An incomplete factorization technique for positive definite linear systems”. In:
Mathematics of computation 34.150 (1980), pp. 473–497.
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Effects of increasing α for the OFFSHORE problem

α FGPILU Sweeps Krylov solver iterations Krylov solver time

0 24 30 24.8067
1 9 56 46.4995

10 5 144 130.0958

Making α larger increases the diagonal dominance of the
matrix, causing the FGPILU algorithm to converge faster

Making α larger also increases the difference between A and Â
which potentially lowers the effectiveness of the preconditioner

Can be seen by an increased number of Krylov solver iterations
and increased Krylov solver execution time
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Soft faults

Soft faults can have an impact on the performance of the
FGPILU algorithm by either delaying convergence or
preventing it entirely

The algorithm is naturally resilient to soft faults with less of
an impact (e.g. bit flips in less significant bits in the mantissa)

In this work, faults were modeled in two ways:
1 As bit flips

Reflects a bit flip in unprotected memory

2 As random perturbations6

Generalizes the occurrence of a fault to a less specific form of
data corruption

6Miroslav Stoyanov and Clayton Webster. “Numerical analysis of fixed point algorithms in the presence of
hardware faults”. In: SIAM Journal on Scientific Computing 37.5 (2015), pp. C532–C553; Evan Coleman and
Masha Sosonkina. “Evaluating a Persistent Soft Fault Model on Preconditioned Iterative Methods”. In:
Proceedings of the 22nd annual International Conference on Parallel and Distributed Processing Techniques and
Applications. 2016.
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Potential impact of a fault on the FGPILU algorithm

Progression of nonlinear residual for 30 sweeps of a typical fault-free
run (8 test problems7) (left).
Progression of nonlinear residual for three different fault injection
times (right).

The horizontal dashed line shows a convergence tolerance of 10−8.
7Evan Coleman, Masha Sosonkina, and Edmond Chow. “Fault Tolerant Variants of the Fine-Grained Parallel

Incomplete LU Factorization”. In: Proceedings of the 2017 Spring Simulation Multiconference. Society for
Computer Simulation International. 2017.
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Checkpointing

Need a mechanism that allows the program to determine if a
fault has occurred

Two residuals proposed and used in Chow and Patel and
Chow, Anzt, and Dongarra to judge the progression of the
fixed point iteration:

Nonlinear residual:

τ =
∑

(i,j)∈S

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ (9)

ILU residual:
||A− LU||F (10)
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8Chow and Patel, “Fine-grained parallel incomplete LU factorization”.
9Edmond Chow, Hartwig Anzt, and Jack Dongarra. “Asynchronous iterative algorithm for computing incomplete

factorizations on GPUs”. In: International Conference on High Performance Computing. Springer. 2015, pp. 1–16.
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Typical progression of residual norms

ecl-ILU ecl-NL off-ILU off-NL

3.38E+04 3.13E+04 5.16E+01 2.81E+01
2.44E+04 9.44E+03 4.60E+01 1.36E+01
2.72E+04 3.74E+03 4.43E+01 6.02E+00
2.90E+04 1.41E+03 4.40E+01 2.77E+00
2.97E+04 4.96E+02 4.39E+01 1.31E+00
2.99E+04 1.74E+02 4.39E+01 6.46E-01
3.00E+04 6.41E+01 4.39E+01 3.20E-01
3.00E+04 2.14E+01 4.39E+01 1.64E-01
3.00E+04 6.99E+00 4.39E+01 8.41E-02
3.00E+04 3.99E+00 4.39E+01 4.03E-02

Note that the nonlinear residual will continue to decrease until
convergence of the FGPILU algorithm is reached, but the ILU
residual quickly settles to a particular value
Problems represent one symmetric (‘off’) and one
non-symmetric (’ecl’) matrix used in this study
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Checkpointing

Obvious idea: Monitor the progression of the nonlinear
residual norm, and declare a fault if τk+r > γ · τk

Solution: If there is a fault, roll-back the entire factor(s)
(either L or U) to the last known good state

Parameters:

γ: how strict to make the check
r : how often to make the check
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Experiment Set-Up

Experiments were conducted on the Turing High Performance
Cluster at Old Dominion University using a single Tesla K80 GPU
Made use of the MAGMA library for: input/output routines, linear
solvers, and the unmodified FGPILU routine
Transient soft faults were injected on a single sweep of the fixed
point iteration; results were averaged over multiple runs
2 non-symmetric matrices were used along with a single SPD matrix
for extended analysis

The two non-symmetric matrices come from previous work on
iterative methods for non-symmetric problems10

The single SPD matrix has the highest conditioning number of
matrices previous studies11

10Edmond Chow and Yousef Saad. “Experimental study of ILU preconditioners for indefinite matrices”. In:
Journal of Computational and Applied Mathematics 86.2 (1997), pp. 387–414; Xiaoye S Li and James Demmel. “A
Scalable Sparse Direct Solver Using Static Pivoting.”. In: PPSC. 1999; Anshul Gupta. “Improved symbolic and
numerical factorization algorithms for unsymmetric sparse matrices”. In: SIAM Journal on Matrix Analysis and
Applications 24.2 (2002), pp. 529–552.

11Chow, Anzt, and Dongarra, “Asynchronous iterative algorithm for computing incomplete factorizations on
GPUs”; Coleman, Sosonkina, and Chow, “Fault Tolerant Variants of the Fine-Grained Parallel Incomplete LU
Factorization”; Evan Coleman and Masha Sosonkina. “Self-Stabilizing Fine-Grained Parallel Incomplete LU
Factorization”. In: Sustainable Computing: Informatics and Systems (2018).
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Experiment Set-Up

Impacts on the preparation of the preconditioner (e.g. the
FGPILU algorithm itself) and on the use of the preconditioner
in a linear solver were studied

Note: to fully judge the impact of transient faults, the fixed
point iteration in the FGPILU algorithm was run until the
nonlinear residual norm was excessively small

Allows for a more complete look at the performance of the
algorithm with respect to soft faults, but artifically inflates
timing results

The initial guess, x0, was set to be a zero vector in all cases

The initial guess for the L and U factors was set to be the
components of A in the same location
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Summary of the matrices used

Matrix
Name

SPD? COND EST Dim. Non-zeros Description

fs 760 3 N 9.93E+19 760 5,816 chemical engineering
ecl32 N 9.41E+15 51,993 380,415 circuit simulation
OFF
SHORE

Y 2.24E+13 259,789 4,242,673 transient electric field
diffusion

Many other matrices from12 were experimented with

Most other matrices did not converge for a satisfactory
number of permutations of α and level of ILU fill-in with the
standard initial guess

To help improve convergence, all problems were scaled to
have unit diagonal

12Chow and Saad, “Experimental study of ILU preconditioners for indefinite matrices”; Benzi, Haws, and Tuma,
“Preconditioning highly indefinite and nonsymmetric matrices”.
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Experiment Combinations

For each of the three matrices that were tested:

four orderings were tested (MC64, AMD, RCM, and the natural
ordering),
3 level of ILU fill-in were tested (levels 0, 1, and 2),
and 3 factors for α were used (0, 0.5, and 1.0).

This leads to a total of 108 permutations:

84 (77.78%) led to a case were the FGPILU algorithm
converged
Only 29 (26.85%) resulted in a successful GMRES solve
Details on the parameters that led to these successful solves
are provided on the next slide
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Detailed Experiment Results

Matrix Ordering α ILU Level Sweeps Krylov Its. Time (s)
offshore AMD 0 0 19 30 18
offshore AMD 0.5 0,1,2 10,11,11 40,34,34 24,55,144
offshore AMD 1 0,1,2 8,9,9 56,54,54 34,96,229
offshore RCM 0 0 19 19 35
offshore RCM 0.5 0,1,2 10,11,11 37,34,34 68,306,771
offshore RCM 1 0,1,2 9,9,9 54,54,54 101,484,1226
offshore Natural 0 0 22 22 84
offshore Natural 0.5 0,1,2 11,12,12 38,34,34 146,312,695
offshore Natural 1 0,1,2 9,10,10 54,54,54 210,491,1104
ecl32 AMD 0 2 15 127 104
ecl32 RCM 0 2 24 9 39
ecl32 Natural 0 2 18 11 16
fs 760 3 AMD 0 2 55 3 0.4
fs 760 3 RCM 0 1,2 52,63 2,2 0.4,0.4
fs 760 3 MC64 0 1 16 3 0.3
fs 760 3 Natural 0 1 16 3 0.3
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Experiment Observations

The two non-symmetric problems tend to perform better with
smaller values of α and higher levels of fill-in allowed
The level of ILU fill-in tends to not have as much of an impact on
whether or not the problem can be solved when compared to the
ordering or value for α, but affects the performance
In the results found here, the benefit of having more complete L and
U factors from going to a higher fill-in level tends to be outweighed
by the increased computational cost of the fixed point iteration
associated with the FGPILU algorithm for a drastically larger
number of elements.

Increased parallelism is possible with more elements which may
be able to be better leveraged by future hardware

Matrix nnz(ILU-0) nnz(ILU-1) nnz(ILU-2)
offshore 4.5mil 10.0mil 21.7mil
ecl32 0.4mil 1.0mil 2.0mil
fs 760 3 6.6k 17.6k 32.3k
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Soft fault resilience

Given that the fixed point iteration does not converge for
every combination of parameters, it is natural to wonder how
a soft fault may affect the convergence

In the symmetric case, several strategies have been tested for
soft fault resilience13

Only checkpointing based on the progression of the nonlinear
residual norm was tested for these matrices since it was the
most robust variant of the FGPILU algorithm developed for
symmetric matrices

13Evan Coleman and Masha Sosonkina. “Fault Tolerance for Fine-Grained Iterative Methods”. In: Proceedings
of the 7th annual Virginia Modeling, Simulation, and Analysis Center Capstone Conference. Virginia Modeling,
Simulation, and Analysis Center. 2017; Coleman and Sosonkina, “Self-Stabilizing Fine-Grained Parallel Incomplete
LU Factorization”.

Coleman HPC’18 33/38



Overview
Convergence and Resilience

Numerical Results
Future Directions

Set Up
Convergence Results
Resilience Results

Soft fault resilience

Only the 29 successful cases were tested in this section

Checkpointing was always able to restore convergence

Checkpointing added minimally to the number of Krylov
iterations and total time, but came at the cost of several extra
sweeps of the FGPILU algorithm
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Future Directions

This talk showcased several potential strategies for increasing
the convergence rate of the FGPILU algorithm

Several main directions for how to move forward with this
work:

1 Continue experimenting with other techniques for increasing
the convergence rate

2 Extend the knowledge gained about convergence of the
asynchronous FGPILU algorithm to a less specific setting of
general asynchronous iterative methods

3 Expand the test suite of problems to encapsulate more
matrices / domain areas

4 Test other resilience methods for this (or any other) more
difficult problem set
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Future Directions

Other potential applications for the FGPILU fixed point
iteration:

More complicated preconditioning routines that make use of
fixed point sweeps
Fine-grained generation and application of preconditioner in
conjunction with fine-grained sparse triangular solves
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