
Impacts of Three Soft-Fault Models on Hybrid
Parallel Asynchronous Iterative Methods

Evan Coleman∗†, Erik J. Jensen† and Masha Sosonkina†
∗Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA

†Modeling, Simulation and Visualization Engineering Department, Old Dominion University, Norfolk, VA
Email: ecole028@odu.edu, ejens005@odu.edu, msosonki@odu.edu

Abstract—This study seeks to understand the soft error vul-
nerability of asynchronous iterative methods, with a focus on
stationary iterative solvers such as Jacobi. The implementations
make use of hybrid parallelism where the computational work
is distributed over multiple nodes using MPI and parallelized on
each node using OpenMP. A series of experiments is conducted
to measure the impact of an undetected soft fault on an
asynchronous iterative method, and to compare and contrast
several techniques for simulating the occurrence of a fault and
then recovering from the effects of the faults. The data shows that
the two numerical soft-fault models tested here more consistently
than a “bit-flip” model produce bad enough behavior to test a
variety of recovery strategies, such as those based on partial
checkpointing.

Index Terms—Fault modeling, fault tolerance, hybrid paral-
lelism, asynchronous iterative methods

I. INTRODUCTION

The prevalence of faults is expected to increase as platforms
continue to grow [1]–[5], which will cause the mean time
between failures (MTBF) to continue to decrease. This calls
for the design of fault-tolerant computational algorithms that
are robust in the face of these failures. Development of such
algorithms has become one of many priorities on the road
towards exascale. At a high level, computing faults can be
divided into two distinct categories: hard faults and soft faults
[6]–[8]. The key characteristic of all hard faults is that they
cause program interruption, which makes them difficult to
deal with from an algorithmic standpoint. Conversely, soft
faults do not immediately cause program interruption, although
such an interruption may occur as a result of their impact.
Transient soft faults are typically caused by solitary bit flips,
which may be caused by different issues, such as radiation,
hardware malfunction, or data-cache set incorrectly. Whether
researchers choose to model faults using bit flips or adopt a
more numerical approach, much of the previous work on the
impact of silent data corruption (SDC) has to do with the
modeling of transient errors.

The occurrence of soft faults has been commonly modeled
by the injection of bit flips into the data structures of the
algorithm [9], [10]. Recent research efforts (see, e.g., [8],
[11]–[16]) have focused on modeling the impact of soft
faults with a numerical approach that quantifies the potential
impact by generating an appropriately sized fault using a more
numerically-based scheme. This paper aims to establish the
impact a soft fault can have on asynchronous iterative methods

(specifically, fixed point methods capable of solving linear
systems). It analyses a series of experiments featuring both
transient bit flips and generalized numerical soft-fault models,
which are based on corrupting data in certain data structures.
Additionally, experiments with partial checkpointing to miti-
gate the impact of the soft faults are presented and analyzed.

The remainder of the paper is organized as follows: in
Section II an overview of related studies is given, in Section III
a review of asynchronous iterative methods—with an emphasis
on the algorithm under study here—is provided. Section IV
details on the hybrid parallel, asynchronous implementation
used, Sections V and VI discusses various ways to model
the impact of a soft fault and the technique used here for
the recovery. Section VII provides numerical experiments and
Section VIII concludes.

II. RELATED WORK

The efficacy of asynchronous methods, especially for grid
systems, is proposed based on computational and communi-
cation strategies [17], [18]. Work has also been performed
to demonstrate the superior performance of asynchronous
methods for solving large sparse linear fixed-point problems
[19]. Comparisons of parallel implementations, using both
MPI and OpenMP, have been conducted [20], and simulations
have been developed [21].

Examples of work examining the performance of asyn-
chronous iterative methods include an in-depth analysis from
the perspective of utilizing a system with a co-processor [22],
[23], as well as performance analysis of asynchronous methods
[24]–[26]. In particular, both [24], [26] focus on low level
analysis of the asynchronous Jacobi method, similar to the
example problem presented here. Work exploring possibilities
for reducing the communication costs inherent in a distributed
asynchronous solver has also been performed [27].

Fault tolerance has been studied previously for specific
asynchronous iterative methods. A fine-grained scheme for
fault tolerance for stationary iterative solvers was proposed
and refined [28], [29]. Similarly, analysis of the soft fault re-
silience of fine-grained incomplete factorizations has also been
performed [13], [14], [30]. Numerical soft fault models have
been previously compared [12], [31] for traditional Krylov
subspace solvers. A general position paper on the efficacy of
treating soft faults has numerical corruption has been provided
[32]. The impact of bit flips specifically has been analyzed

numerically [10] and examined in the case of synchronous
iterative solvers (with a focus on Krylov subspace solvers)
[9].

III. REVIEW OF ASYNCHRONOUS ITERATIVE METHODS

When performing computation asynchronously, each com-
ponent of the problem should be updated such that no informa-
tion from the other computations is needed while the update is
being made, allowing for each processor to act independently
from all others. Depending on the size of both the problem,
each processor may update a single element, or a block of
components. The model that is shown here to provide a basis
for asynchronous computation comes mainly from [33].

The model adopted searches for fixed points of functions.
To start, consider a function, G : D → D. A fixed point
iteration is performed such that,

xk+1 = G(xk), (1)

and a fixed point is declared if xk+1 ≈ xk. Given a finite
number of processors P1, P2, . . . , Pp each assigned to a block
B of components B1, B2, . . . , Bm, the computational model
can be stated in Algorithm 1. If each processors (Pl) waits

for each processing element Pl do
for i = 1, 2, . . . until convergence do

Read x from common memory
Compute xi+1

j = Gj(x) for all j ∈ Bl
Update xj in common memory with xi+1

j for
all j ∈ Bl

end
end

Algorithm 1: General Computational Model

for the other processors to finish each update, then the model
describes a parallel synchronous form of computation. If no
order is established for the processors, then the computation
is asynchronous.

Set a global iteration counter k that increases each time
a processor reads x from memory. At the end of an up-
date by processor p, the components associated with the
block Bp will be updated. This results in a vector, x =

(x
s1(k)
1 , x

s2(k)
2 , . . . , x

sm(k)
m) where sl(k) indicates how many

times component l has been updated. Lastly, define a set of
indices, Ik, that contains the components that were updated on
the kth iteration. Given these definitions, the three following
conditions (along with the model presented in Algorithm 1)
provide a framework for asynchronous computation.

Definition 1. If the following three conditions hold:

1) si(k) ≤ k − 1, i.e. only components that have finished
computing are used in the current approximation.

2) limk→∞ si(k) = ∞, i.e. the newest updates for each
component are used.

3) |k ∈ N : i ∈ Ik| = ∞, i.e all components will continue
to be updated.

Then given an initial x0 ∈ D, the iterative update process
defined by,

xki =

{
xk−1i i /∈ Ik
Gi(~x) i ∈ Ik

where the function Gi(~x) uses the latest updates available is
called an asynchronous iteration.

This basic computational model (i.e. the combination of
Algorithm 1 and Definition 1 together) allows for many
different results on fine-grained iterative methods.

A. Asynchronous Jacobi

Partial differential equations mathematically model systems
in which continuous variables, such as temperature or pressure,
change with respect to two or more independent variables,
such as time, length, or angle [34]. Laplace’s equation in two
dimensions,

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= b, (2)

is fundamental for modeling equilibrium and steady state
problems, such as incompressible fluid flow or heat transfer,
and maintains that the rate at which a fluid enters a domain is
equal to the rate at which a fluid leaves the domain. In practice,
the partial differential equation is not used directly, but is
discretized such that a finite difference operator computes
difference quotients over a discretized domain. For example,
the two-dimensional discrete Laplace operator,

(
∇2f

)
(x, y) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1)

+ f(x, y + 1)− 4f(x, y), (3)

approximates the two-dimensional continuous Laplacian using
a five-point stencil [35]. A special case of the Jacobi algorithm,

(
vk+1
l,m =

1

4
(vkl+1,m + vkl−1,m + vkl,m+1 + vkl,m−1

)
, (4)

may be applied to solve a two-dimensional sparse linear
system of equations [36]. This work uses the Jacobi algorithm
to solve a two-dimensional finite-difference discretization of
the Laplacian with Dirichlet boundary conditions. This can be
viewed as a heat diffusion problem, in which a plate is held
to specific temperatures along the boundary [37]. Pseudocode
for this algorithm is provided below in Algorithm 2. Note that
each processor, Pl, may not be available to compute updates
at the same time. This lack of determinism in the update order
(i.e. the amount of time it will take a processor to perform the
Jacobi relaxation for the components that are assigned to it)
leads to the asynchronous nature of the algorithm.

Input: aij ∈ A, initial guess for x(0), a number of
processing elements p, an input random
number distribution

Output: Solution vector x
Assign elements xi ∈ x to each processing element
for t = 1, 2, . . . until convergence do

for each processor Pl do
if Pl is ready to compute updates then

for each element xi ∈ x assigned to Pl do
xi =

−1
aii

[∑
j 6=i aijxj − bi

]
end

end
end
Calculate the residual, b−Ax(t)
Check termination conditions

end
Algorithm 2: Asynchronous Jacobi

IV. PARALLEL IMPLEMENTATION

The asynchronous Jacobi implementation used in this study
makes use of hybrid MPI-OpenMP parallelism. This im-
plementation focuses on solving a two dimensional finite-
difference discretization of the Laplacian on a 400 × 400
grid; including the boundary values the total problem size is
402×402. The problem is solved by a matrix-free implemen-
tation of the Jacobi algorithm.

The work is divided among five MPI processes, but only
four perform computations. One MPI process acts as a master
process, which communicates with workers for memory trans-
fer and global residual calculations. Each of the four worker
processes is assigned an equal amount of the entire domain,
which leads to each subdomain consisting of 200 × 200 grid
points. Note that the working size of each subdomain grid
will be 202 × 202 due to keeping track of the necessary
halo values (i.e. a mixture of values from the boundary and
neighboring subdomains). The work is parallelized inside of
each subdomain using OpenMP.

For an n by n grid that is equally divided among the np
threads, each thread solves for n2/np grid points, such that
the grid is evenly partitioned along the y-axis. Ten OpenMP
threads were used for each MPI process, which gives each
thread 200×20 = 4000 vector components to compute updates
for.

Internally, two matrices U0 and U1 store the grid point
values that each thread reads, e.g. from U1, to compute newer
values to write, e.g. to U0. As the method is asynchronous,
each thread independently determines which matrix stores its
newer u(t+1)(i, j) values and older u(t)(i, j) values. When
a thread copies grid-point values located above or below its
domain, OpenMP locks are employed to ensure that data is
captured accurately, from a single iteration.

Further, locks are used when updating values on boundary
rows and subdomain halos, and when copying subdomain
boundaries. Each thread pn computes its local residual value

every kth iteration, which it contributes to the set of residual
values for the subdomain. Using an OpenMP atomic operation,
a single thread copies the set of subdomain residuals, computes
a sum, and sends the sum to the master MPI process. The
subdomain is equally divided among all OpenMP threads, but
in order to avoid a negative effect on the performance of a
single OpenMP thread, communication with the master MPI
process is rotated among the threads.

V. MODELING THE IMPACT OF A SOFT FAULT

In the majority of studies, the occurrence of an undetected
soft fault is overwhelmingly treated as a bit flip (see, e.g., [9]).
Traditionally, bit flips are injected randomly according to a
given distribution (often, a Poisson or Weibull distribution),
or else in a more frequent manner designed to showcase
worst case behavior. However, as the effect of a bit-flip (i.e.,
the amount of data corruption introduced) can vary wildly
depending on which bit is affected, this necessitates a large
number of runs to reveal statistically average behavior [32].
In this study, a series of experiments utilizing the direct
injection of bit flips into memory is presented; additionally,
more generic fault injection techniques are included.

Following the methodology outlined in [32], the numerical
fault models used here are inspired by the idea of modeling
an undetected soft fault as data corruption. That is, instead of
trying to model the exact impact of a fault on future large scale
HPC machines, faults are treated as corrupted data where the
size of the corruption can be controlled in an effort to produce
consistent worst case behavior and help with the development
of fault tolerant algorithms. The goal of considering a variety
of soft-fault models is to produce fault-tolerant algorithms that
are not too dependent on the precise mechanism of a fault,
such as a bit-flip, in future computing platforms. Note that,
in this work, faults are injected only into the data used by
the algorithm as opposed to the metadata that includes also
pointers, indices, and other data-structure descriptions, because
the metadata, while necessary to be fault-free also, is tied to
a specific implementation of the given algorithm on a given
architecture, which is beyond the scope of this paper.

a) Bit-Flip Soft Fault Model (BFSFM): The first method
of simulating a fault adopted in this study is via the direct
injection of a bit-flip into a data structure. Soft faults typically,
at least for current HPC hardware, manifest as bit-flips. While
it is important for future computing platforms not to become
too dependent on the precise mechanism that is used to model
the instantiation of a fault, since bit-flips are currently the
most likely form of a soft fault to affect HPC hardware it is
important to include analysis that responds to the effects of
having a bit-flip occur during the run.

b) Perturbation-Based Soft Fault Model (PBSFM): This
approach models faults as perturbations to the faulty sub-
domain, and have been already used in several other recent
studies (see, e.g., [11], [13]–[15], [30]) along with similar
approaches. In PBSFM, a small random perturbation τ that
is sampled from a uniform distribution of a given size is
injected transiently into each component representing a value

of the targeted data structure. For example, if the targeted
data structure is a vector x and the maximum size of the
perturbation-based fault is ε, then proceed as follows: (1)
generate a random number τi ∈ (−ε, ε), (2) set x̂i = xi + τi
for all values of i. The resultant vector x̂ is, thus, perturbed
away from the original vector x.

c) Shuffle-Based Soft Fault Model (SBSFM): This ap-
proach models faults primarily as a shuffling of the elements
inside of the faulty subdomain. This approach was originally
detailed in [16] and simulates the occurrence of a soft fault by
a permutation of the components inside of the subdomain in
which a fault was injected, a scaling of the data inside of the
subdomain in which a fault was injected, or a combination of
these two effects. The analysis that was performed in [16], [38]
details the impact of the SBSFM model in the case where it is
modeling transient soft faults with various scaling values for
traditional synchronous iterative methods; specifically Krylov
subspace methods such as GMRES and CG. The focus in this
study is on the effect of various fault injection models on
asynchronous iterative methods. The impact of this fault model
relative to the impact of a single bit flip is studied in [16]. bit
flip occurs, the SBSFM will perform in a similar way to the
worst case scenario induced by BFSFM.

A. Analysis of Fault Injection Utilities

To compare the potential effects of the various fault in-
jection techniques used here—with an emphasis on the to-
tal amount of data corruption induced—a short analysis is
presented for the problem studied. The discretization of the
Laplacian described in Section IV results in a matrix of size
160000 × 160000 if the problem is converted to the matrix
form Ax = b. Letting the initial x be a vector of all zeros and
the initial b be a vector of all ones, the iterate of x examined
here is the 50th iterate, denoted x(50).

For this iterate of x from the matrix representation of the
problem, the first quarter of the elements are isolated (i.e., to
correspond to one of the four subdomains that is assigned to
a single MPI process as described in Section IV), and then
the first tenth of these elements are isolated (corresponding
to the components assigned to the first OpenMP thread)
and the effect of fault-models is examined for this localized
subdomain. The methods that are compared are as follows:
• PBSFM large: τi ∈ (10−16, 1016), medium: τi ∈
(10−8, 108), and small: τi ∈ (10−2, 102).

• SBSFM large: α = 1014, medium: α = 106, and small:
α = 102.

• BFSFM: one vector component randomly selected, in
which one bit is randomly selected.

Total 10,000 trials were run, and aggregate data is presented
in Table I. The total amount c of data corruption is measured
as c = ||x − x̂||, where x̂ represents the iterate under study
with the specified fault injected. Mean and median information
is provided over the 10,000 trials as well as the average and
standard deviation of the logarithm of c, which provides some
insight into the average order of magnitude of corruption and
how wide the spread of potential outcomes is. Note that the

range of impacts is wider for the BFSFM, but that the average
impact is the worst for the numerical fault models.

TABLE I
COMPARISON OF DIFFERENT FAULT INJECTION TECHNIQUES

Mean(c) Median (c) Mean(log(c)) Std(log(c))
PBSFM (L) 3.65E+17 3.65E+17 40.44 0.007
PBSFM (M) 3.65E+09 3.65E+09 22.02 0.007
PBSFM (S) 3.65E+03 3.65E+03 8.20 0.007
SBSFM (L) 5.77E+17 5.77E+17 40.90 7.30E-12
SBSFM (M) 5.77E+09 5.77E+09 22.48 7.41E-09
SBSFM (S) 5.74E+05 5.74E+05 13.26 7.51E-05
BF 1.13E+304 3.05E-05 -0.81 52.8

VI. TECHNIQUES FOR RECOVERY FROM SOFT FAULTS

Formulating efficient techniques that allow an algorithm
to recover from soft faults is an important area of research
as HPC platforms progress towards exascale. The prevailing
wisdom is that globally checkpointing all processors will not
be feasible computationally for large-scale problems due to the
immense costs of reading/writing data and globally communi-
cating [2], [3]. While this is true for any iterative method, for
the fine-grained asynchronous iterative algorithms the use of
global (or even large-subgroup) communications is prohibitive
because synchronization used in such communications goes
against the very nature of these algorithms relying on a great
number of light-weight thread or process computations. In this
paper, a partial checkpointing method is used that avoids many
of the communication related pitfalls inherent in the simple
global checkpointing algorithm. This method is similar to the
partial checkpointing method used for the FGPILU algorithm
in [13], [14].

Progress of the Jacobi algorithm is often judged by the
progression of the residual r = b − Ax(k). However, check-
pointing based on the progression of the residual after it is
recovered from all components of x(k) necessitates commu-
nication among all the OpenMP threads as well as all the
MPI processes. The partial checkpointing checkpoints only
based on the local portion of the residual, denoted rl. As
the asynchronous computation progresses, each thread writes
periodically the current value of the components xl for which
it is responsible to checkpoint. The periodicity is treated as a
parameter, which is studied in Section VII. After the thread
updates its components in the kth iteration, x(k)l , it checks the
current local residual to see if a fault has occurred:

r
(k)
l > γ · r(k+1)

l , (5)

where γ > 1 is the checkpoint threshold, explored in Sec-
tion VII, r(k)l and r

(k+1)
l are local residuals for the iteration

k and k+1, respectively. γ in this study ranged from 1.01 to
1.25.

VII. NUMERICAL EXPERIMENTS

Experiments were conducted on the Turing High Perfor-
mance Computing cluster at Old Dominion University, which
contains 190 standard compute nodes, 10 GPU nodes, 10

mean
3.19

2.75
3.41

2.52
3.63

mean = 2.97
std = 0.222

2.5 3 3.5 4
Time (s)

0

50

100

150

200

250

300

350

C
o

u
n

t

Fig. 1. Distribution of run times in a fault-free environment.

Intel Xeon Phi Knight’s Corner nodes, and 4 high memory
nodes, connected with a Fourteen Data Rate (FDR) InfiniBand
network. Compute nodes contain 16–32 cores and 128 GB of
RAM. Data were collected on sockets consisting of 10 Intel
Xeon E5-2670 v2 2.50 Ghz cores.

Before delving into the results regarding the impact and re-
covery of soft faults on the hybrid parallel iterative solver used
here, a set of baseline runs is presented. The problem described
in Section IV is solved 500 times and a histogram showing
the distribution of total run times, and mean and standard
deviation, is presented in Fig. 1. Some variation in run time
is observed, but this is not unexpected for an asynchronous
solver. A wide variation in iterations until convergence is
seen in [26], and [39] shows increased run time variation
for asynchronous solvers. Here, the run time for +3 standard
deviations is 1.31 times the minimum run time. Almost 98%
of runs are less than +3 standard deviations.

A. Impact of Soft Faults

The following model parameter values were used
• For PBSFM, the pertubation τ values were taken from a

set of intervals (10−2j , 102j) for j = 1, . . . , 8.
• For SBSFM, the α values were 102, 106, 1010, and 1016.

Based on the mean runtime of 2.97s shown in Fig. 1, three
different fault injection times were used as follows: early,
equal to 0.1s, middle, equal to 1.2s, and late of 2.5s.

Figures 2 to 5 show the effects from faults injected by
each model at early, middle, and late time points. In addition,
the effects of bit flips restricted to sign or exponent are
distinguished from those restricted to mantissa in separate
plots Fig. 2 and Fig. 3, respectively. Each experiment was
replicated seven times on Turing. The plots show the results
from the fastest, slowest, and average of these seven runs. In
all experiments, the solver converged to a correct solution,
within a tolerance of 1e−4.

Figure 2 shows that flipping an exponent bit early in the
run, when grid point values may still be small, might not be
as deleterious as a later bit flip. Across all the faults models,
faults injected early tend to have more of an effect on the
total time for the solve to complete. Note also that, while bit-
flip faults in the exponent and sign bits can have a catastrophic

54 56 58 60 62 64
Bit Position Flipped

0

100

200

300

400

T
im

e
(s

)

Fastest Mean Slowest
Run

(a) Early

54 56 58 60 62 64
Bit Position Flipped

0

50

100

150

200

250

300

T
im

e
(s

)

Fastest Mean Slowest
Run

(b) Middle

54 56 58 60 62 64
Bit Position Flipped

0

50

100

150

200

250

300

T
im

e
(s

)

Fastest Mean Slowest
Run

(c) Late

Fig. 2. Effect of bit-flip faults in the exponent and sign bits.

10 20 30 40 50
Bit Position Flipped

2.5

3

3.5

4

4.5

5

T
im

e
(s

)

Fastest Mean Slowest

(a) Early

10 20 30 40 50
Bit Position Flipped

2

3

4

5

6

7

T
im

e
(s

)

Fastest Mean Slowest

(b) Middle

10 20 30 40 50
Bit Position Flipped

2

3

4

5

6

7

T
im

e
(s

)

Fastest Mean Slowest

(c) Late

Fig. 3. Effect of bit-flip faults in the mantissa bits.

effect, bit-flips occurring in the mantissa have very little impact
on the performance of the solver (cf. Fig. 1). PBSFM and
SBSFM force more consistently bad behavior. This reinforces
experimental outcome (see Table I in Section V): a numerical
soft-fault model can more effectively force an algorithm to
run through bad behavior, while a stochastic bit-flip injection
may force an extreme behavior, but may have little effect.
Numerical soft fault models afford users a higher level of
control.

100 105 1010 1015

Scalar Size

2

4

6

8

10

12

14

16

T
im

e
(s

)

Fastest Mean Slowest

(a) Early

100 105 1010 1015

Scalar Size

4

6

8

10

12

14

16

T
im

e
(s

)

Fastest Mean Slowest

(b) Middle

100 105 1010 1015

Scalar Size

4

6

8

10

12

14

16

18

T
im

e
(s

)

Fastest Mean Slowest

(c) Late

Fig. 4. Effect of faults injected using the SBSFM.

100 105 1010 1015

Perturbation Size

2

4

6

8

10

12

14

T
im

e
(s

)

Fastest Mean Slowest

(a) Early

100 105 1010 1015

Perturbation Size

0

5

10

15

20

T
im

e
(s

)

Fastest Mean Slowest

(b) Middle

100 105 1010 1015

Perturbation Size

2

4

6

8

10

12

14

16

T
im

e
(s

)

Fastest Mean Slowest

(c) Late

Fig. 5. Effect of faults injected using the PBSFM.

B. Recovery from Soft Faults

Consider the partial checkpointing scheme detailed in Sec-
tion VI. The fault is injected near the middle time, at 1.4s, in
each run. The values of γ in Eq. (5) are 1.01, 1.05 and 1.25
to test for very, moderate, and least sensitive fault detection,
respectively.

At the end of an iteration, a thread compares the current
component residual value to a previous value. If a fault is
detected as an increase of the residual by more than the
specified γ, the thread(s) that detected the increase roll(s) all
of the components present in their subdomain back to the last

54 56 58 60 62 64
Bit Position Flipped

8

8.5

9

9.5

T
im

e
(s

)

Fastest Mean Slowest
Run

(a) γ = 1.01

54 56 58 60 62 64
Bit Position Flipped

4.5

5

5.5

T
im

e
(s

)

Fastest Mean Slowest
Run

(b) γ = 1.05

54 56 58 60 62 64
Bit Position Flipped

3.5

4

4.5

T
im

e
(s

)

Fastest Mean Slowest
Run

(c) γ = 1.25

Fig. 6. Effect of recovery with bit-flip faults in the exponent and sign bits.

checkpoint and continue(s) calculating updates as before. A
thread checkpoints after completing four iterations that do not
require a rollback.

Figure 6, compared with Fig. 2, shows that the checkpoint-
ing and rollback technique employed for this work effectively
managed the exponent bit-flip fault injections. Comparing
Fig. 7 with Fig. 3 yields little difference—as expected—while
attesting to only a moderate overhead of checkpointing. In
particular, the largest mean value in Fig. 3(b) was ∼3.5s while
the largest mean value in Fig. 7(c), i.e., for the least sensitive
fault detection, at γ = 1.25, was ∼3.8s

If corrupted values are on the edge of a thread com-
pute region, they may spread to the compute region of a
neighboring thread and compromise resiliency. This behavior
is more readily observed when using numerical soft fault
models, such as PBSFM and SBSFM, since they impact all of
the components assigned to the thread, including boundary
values. Hence, a trade-off between the sensitivity of the
fault-detection and checkpointing overhead is desirable. For
example, compare plots for γ = 1.05 in Figs. 8 and 9
with the ones for smaller and larger γ values, respectively.
Note also that the recovery with SBSFM in Fig. 8 exhibits
consistently increasing difference between the slowest and the
fastest runs with the increase in the pertubation size. Fault
recovery mechanisms in some cases are able to correct PBSFM
and SBSFM faults, depending on the circumstances of the
run, i.e. if the fault thread is able to detect the fault and
roll back before adjacent threads copy bad values to their
compute regions. Successful and failing recovery outcomes
are shown in Fig. 8, where the fastest runs indicate successful
recovery and the slowest runs correspond to recovery failure.
The implementation tested in this work corrected SBSFM
faults at a higher rate than PBSFM faults.

10 20 30 40 50
Bit Position Flipped

8

8.5

9

9.5

10

T
im

e
(s

)

Fastest Mean Slowest

(a) γ = 1.01

10 20 30 40 50
Bit Position Flipped

4

4.5

5

5.5

6

T
im

e
(s

)

Fastest Mean Slowest

(b) γ = 1.05

10 20 30 40 50
Bit Position Flipped

3.5

4

4.5

T
im

e
(s

)

Fastest Mean Slowest

(c) γ = 1.25

Fig. 7. Effect of recovery with bit-flip faults in the mantissa bits.

100 105 1010 1015

Scalar Size

5

10

15

20

25

30

35

40

T
im

e
(s

)

Fastest Mean Slowest

(a) γ = 1.01

100 105 1010 1015

Scalar Size

5

10

15

20

T
im

e
(s

)

Fastest Mean Slowest

(b) γ = 1.05

100 105 1010 1015

Scalar Size

2

4

6

8

10

12

14

16

T
im

e
(s

)

Fastest Mean Slowest

(c) γ = 1.25

Fig. 8. Effect of fault recovery with the SBSFM.

VIII. SUMMARY AND FUTURE DIRECTIONS

This study presented analysis of two numerical soft fault
models for the development of fault tolerant algorithms.
Results were presented for asynchronous iterative methods;
specifically those implemented in a hybrid parallel fashion.
The results show that the use of numerical soft fault models
may be useful for the development of fault tolerant algorithms
since the average impact induced by the numerical soft fault
models is large enough to cause detrimental effect to the
execution of the iterative algorithm.

In the future, it would be helpful to conduct similar

100 105 1010 1015

Perturbation Size

5

10

15

20

25

30

35

T
im

e
(s

)

Fastest Mean Slowest

(a) γ = 1.01

100 105 1010 1015

Perturbation Size

0

5

10

15

20

T
im

e
(s

)

Fastest Mean Slowest

(b) γ = 1.05

100 105 1010 1015

Perturbation Size

2

4

6

8

10

12

14

16

T
im

e
(s

)

Fastest Mean Slowest

(c) γ = 1.25

Fig. 9. Effect of fault recovery with the PBSFM.

experiments on a larger problem set. The finite difference
discretization of the Laplacian is a common test problem
since it is found inside of many complex problems, and can
be indicative of performance for sparse symmetric positive-
definite problems. However, examining the performance of the
asynchronous iterative methods on a broader suite of problems
may allow the analysis to be extended. It would also be helpful
to extend the testing to a larger suite of algorithms. Examples
include, randomized Gauss-Seidel [23] and parallel Southwell
[27], [40]. While a global checkpointing scheme (i.e., across
all processes) will most likely be prohibitively slow, it may
prove useful as a comparison. Checkpointing across an entire
process would provide another point of comparison, as would
including other modern techniques that avoid the calculation
of the residual altogether [28], [29]. Given this larger set
of data, more extensive analysis across the methods may
be possible. For example, examining the recovery rate and
induced overhead allows one to make informed resilience
decisions when developing resilient asynchronous iterative
algorithms for next-generation extreme-scale computing.

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office
of Scientific Research under the AFOSR award FA9550-12-1-
0476, by the U.S. Department of Energy (DOE) Office of Ad-
vanced Scientific Computing Research under the grant DE-SC-
0016564 and the Exascale Computing Project (ECP) through
the Ames Laboratory, operated by Iowa State University under
contract No. DE-AC00-07CH11358, by the U.S. Department
of Defense High Performance Computing Modernization Pro-
gram, through a HASI grant, the Turing High Performance
Computing cluster at Old Dominion University, and through
the ILIR/IAR program at the Naval Surface Warfare Center,

Dahlgren Division. The authors also wish to acknowledge
helpful comments from the reviewers that increased the quality
of this paper.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams
et al., “The landscape of parallel computing research: A view from
Berkeley,” Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Tech. Rep., 2006.

[2] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” The International Journal of High Perfor-
mance Computing Applications, vol. 23, no. 4, pp. 374–388, 2009.

[3] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, 2014.

[4] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina et al., “Ascac subcommit-
tee report: The opportunities and challenges of exascale computing,”
Technical report, United States Department of Energy, Fall, Tech. Rep.,
2010.

[5] ——, “The opportunities and challenges of exascale computing–
summary report of the advanced scientific computing advisory commit-
tee (ascac) subcommittee,” US Department of Energy Office of Science,
2010.

[6] M. Hoemmen and M. A. Heroux, “Fault-tolerant iterative methods
via selective reliability,” in Proceedings of the 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society, vol. 3. Citeseer, 2011, p. 9.

[7] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen,
“Fault-tolerant linear solvers via selective reliability,” arXiv preprint
arXiv:1206.1390, 2012.

[8] J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the impact of sdc
on the gmres iterative solver,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. IEEE, 2014, pp. 1193–
1202.

[9] G. Bronevetsky and B. de Supinski, “Soft error vulnerability of iterative
linear algebra methods,” in Proceedings of the 22nd annual international
conference on Supercomputing. ACM, 2008, pp. 155–164.

[10] J. J. Elliott, F. Mueller, M. K. Stoyanov, and C. G. Webster, “Quantifying
the impact of single bit flips on floating point arithmetic,” Oak Ridge
National Laboratory (ORNL), Tech. Rep., 2013.

[11] E. Coleman and M. Sosonkina, “Evaluating a Persistent Soft Fault
Model on Preconditioned Iterative Methods,” in Proceedings of the 22nd
annual International Conference on Parallel and Distributed Processing
Techniques and Applications, 2016.

[12] E. Coleman, A. Jamal, M. Baboulin, A. Khabou, and M. Sosonkina, “A
Comparison of Soft-Fault Error Models in the Parallel Preconditioned
Flexible GMRES,” in Proceedings of the 12th International Conference
on Parallel Processing and Applied Mathematics. ACM, 2017.

[13] E. Coleman, M. Sosonkina, and E. Chow, “Fault Tolerant Variants of
the Fine-Grained Parallel Incomplete LU Factorization,” in Proceedings
of the 2017 Spring Simulation Multiconference. Society for Computer
Simulation International, 2017.

[14] E. Coleman and M. Sosonkina, “Self-Stabilizing Fine-Grained Parallel
Incomplete LU Factorization,” Sustainable Computing: Informatics and
Systems, 2018.

[15] M. Stoyanov and C. Webster, “Numerical analysis of fixed point algo-
rithms in the presence of hardware faults,” SIAM Journal on Scientific
Computing, vol. 37, no. 5, pp. C532–C553, 2015.

[16] J. Elliott, M. Hoemmen, and F. Mueller, “A Numerical Soft Fault Model
for Iterative Linear Solvers,” in Proceedings of the 24nd International
Symposium on High-Performance Parallel and Distributed Computing,
2015.

[17] J. M. Bahi, S. Contassot-Vivier, and R. Couturier, “Performance com-
parison of parallel programming environments for implementing aiac
algorithms,” The Journal of Supercomputing, vol. 35, no. 3, pp. 227–
244, 2006.

[18] ——, “Coupling dynamic load balancing with asynchronism in iterative
algorithms on the computational grid,” in Parallel and Distributed
Processing Symposium, 2003. Proceedings. International. IEEE, 2003,
pp. 9–pp.

[19] D. V. De Jager and J. T. Bradley, “Extracting state-based performance
metrics using asynchronous iterative techniques,” Performance Evalua-
tion, vol. 67, no. 12, pp. 1353–1372, 2010.

[20] K. Voronin, “A numerical study of an mpi/openmp implementation based
on asynchronous threads for a three-dimensional splitting scheme in
heat transfer problems,” Journal of Applied and Industrial Mathematics,
vol. 8, no. 3, pp. 436–443, 2014.

[21] E. Coleman, E. Jensen, and M. Sosonkina, “Simulation Framework for
Asynchronous Iterative Methods,” Journal of Simulation Engineering,
2018.

[22] H. Anzt, “Asynchronous and multiprecision linear solvers-scalable and
fault-tolerant numerics for energy efficient high performance comput-
ing,” Ph.D. dissertation, Karlsruhe, Karlsruher Institut für Technologie
(KIT), Diss., 2012, 2012.

[23] H. Avron, A. Druinsky, and A. Gupta, “Revisiting asynchronous linear
solvers: Provable convergence rate through randomization,” Journal of
the ACM (JACM), vol. 62, no. 6, p. 51, 2015.

[24] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham, “Investigating
the Performance of Asynchronous Jacobi’s Method for Solving Systems
of Linear Equations,” To appear in International Journal of High
Performance Computing Applications, 2011.

[25] J. Hook and N. Dingle, “Performance analysis of asynchronous parallel
jacobi,” Numerical Algorithms, pp. 1–36, 2013.

[26] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham, “Perfor-
mance analysis of asynchronous Jacobi’s method implemented in MPI,
SHMEM and OpenMP,” The International Journal of High Performance
Computing Applications, vol. 28, no. 1, pp. 97–111, 2014.

[27] J. Wolfson-Pou and E. Chow, “Reducing communication in distributed
asynchronous iterative methods,” Procedia Computer Science, vol. 80,
pp. 1906–1916, 2016.

[28] H. Anzt, J. Dongarra, and E. S. Quintana-Ortı́, “Tuning stationary
iterative solvers for fault resilience,” in Proceedings of the 6th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems.
ACM, 2015, p. 1.

[29] ——, “Fine-grained bit-flip protection for relaxation methods,” Journal
of Computational Science, 2016.

[30] E. Coleman and M. Sosonkina, “Convergence and Resilience of the
of the Fine-Grained Parallel Incomplete LU Factorization for Non-
Symmetric Problems,” in Proceedings of the 2018 Spring Simulation
Multiconference. Society for Computer Simulation International, 2018.

[31] ——, “A Comparison and Analysis of Soft-Fault Error Models using
FGMRES,” in Proceedings of the 6th annual Virginia Modeling, Simu-
lation, and Analysis Center Capstone Conference. Virginia Modeling,
Simulation, and Analysis Center, 2016.

[32] J. Elliott, M. Hoemmen, and F. Mueller, “Resilience in numerical
methods: a position on fault models and methodologies,” arXiv preprint
arXiv:1401.3013, 2014.

[33] A. Frommer and D. B. Szyld, “On asynchronous iterations,” Journal of
computational and applied mathematics, vol. 123, no. 1, pp. 201–216,
2000.

[34] G. D. Smith, Numerical solution of partial differential equations: finite
difference methods. Oxford university press, 1985.

[35] T. Lindeberg, “Scale-space for discrete signals,” IEEE transactions on
pattern analysis and machine intelligence, vol. 12, no. 3, pp. 234–254,
1990.

[36] J. C. Strikwerda, Finite difference schemes and partial differential
equations. Siam, 2004, vol. 88.

[37] S. C. Chapra and R. P. Canale, Numerical methods for engineers.
McGraw-Hill New York, 1998, vol. 2.

[38] J. Elliott, M. Hoemmen, and F. Mueller, “Tolerating Silent Data Corrup-
tion in Opaque Preconditioners,” arXiv preprint arXiv:1404.5552, 2014.

[39] F. Jezequel, R. Couturier, and C. Denis, “Solving large sparse linear
systems in a grid environment: the gremlins code versus the petsc
library,” The Journal of Supercomputing, vol. 59, no. 3, pp. 1517–1532,
2012.

[40] J. Wolfson-Pou and E. Chow, “Distributed southwell: an iterative method
with low communication costs,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2017, p. 48.

