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Abstract
A comparison of the impact of soft fault errors - as given by
two distinct soft fault error models - on the GMRES itera-
tive method with flexible preconditioning (called FGMRES)
is performed. The effect of the two soft fault error models is
evaluated on the convergence of FGMRES in solving an el-
liptical PDE problem on a regular grid. Two types of precon-
ditioners are explored, featuring an incomplete LU factoriza-
tion and an algebraic recursive multilevel solver ARMS. The
experiments conducted in this study quantify the difference
in soft fault error modeling approaches and provide a means
to compare the potential impact of soft fault errors of various
types.

1. INTRODUCTION
Research into fault tolerant methods is a natural means to

protect against the appearance of faults inside of computing
programs. The prevalence of faults is expected to increase
as high-performance computing (HPC) platforms continue
to move towards larger and larger computing environments
([4, 1]). As the typical HPC environment moves closer to the
exascale level of performance, the mean time between fail-
ures (MTBF) will continue to decrease dramatically. As the
occurrence of faults becomes increasingly more common, the
software used in HPC environments will become required to
provide some means of fault tolerance in order to deal with
the faults that are experienced. When examining the need for
fault tolerance, one must look at what type of occurrence is
traditionally associated with the word “fault”. In most of the
research into fault tolerance, faults are typically divided into
two distinct categories: hard faults and soft faults ([9, 12]).

Hard faults usually come about due to negative effects on
the physical hardware components of the system; the key
characteristic of all hard faults is that they cause program in-
terruption. As such, they are difficult to deal with from an
algorithmic standpoint. However, as hardware components
themselves continue to evolve and grow both smaller and
faster, they (generally) become more prone to error, and the

algorithms and software packages that are used in HPC en-
vironments need to be able to respond to sudden and unex-
pected changes in both the quantity and quality of the physi-
cal resources that may be available for use.

The other category of faults, soft faults, are notable for the
fact that they do not immediately cause program interruption,
although program interruption can occur as a result of the
damage caused by a soft fault. Another key feature of soft
faults, is that they are able to be detected (though the cost for
detection may be prohibitively high) during program execu-
tion. Most of the time, soft faults allude to some type of data
corruption.

The study of soft faults is the focus of this paper. Soft
faults are typically divided into various categories based on
how long their effect is felt by the resident program. For
a long time, the impact of soft faults was measured by the
injection of bit flips into the data structures that are used
by the algorithm in question. However, recent research ef-
forts (e.g., [8, 9, 10, 6]) have focused on modeling the im-
pact of soft faults with a slightly more generalized numerical
approach that quantifies the potential impact of a bit flip –
which is dependent on where the bit flip occurs – and gener-
ating an appropriately sized fault using a more numerically-
based scheme. The experiments conducted in this paper seek
to adapt two existing, generalized, numerical soft fault mod-
els to study a particular class of soft faults faults (“sticky”
faults) that has not been examined extensively in the past.

The remaining sections of the paper are organized as fol-
lows: in section 2., the motivation for both the adapted fault
models and the study itself is presented, and a brief overview
of related studies is provided as well as general motivation for
the study of soft faults, in section 3., background information
for both the FGMRES algorithm and the preconditioners used
in this experiment is provided, in section 4., details concern-
ing each of the fault models that is used throughout this work
are given, in section 5., experiment results from each of the
fault models are provided, along with an analysis of the sim-
ilarities and differences that appear between the results from
each of the two models, in section 6., a quick summary is pre-
sented along with a few possible directions for future work.
The contributions found in this work include the following:
• An extension to the fault model presented by Elliot,



Hoemmen, and Mueller [8, 9, 10] is provided
• A modification to the fault model presented by Coleman

and Sosonkina in [6] is detailed
• A comparison and analysis of the differences between

each of the adapted models is given, focusing on how
each of the two fault models predicts that a sticky fault
will effect an iterative linear solver – specifically, the it-
erative solver, FGMRES.

2. MOTIVATION AND RELATED WORK
As the easiest instance of a soft fault to understand occurs

in the form of a bit flip, researchers have typically relied upon
the direct injection of bit flips into their routines in order to
simulate the occurrence of a soft fault [3, 11]. On the other
hand, in the work by Elliot, Hoemmen, and Mueller [8, 9, 10],
faults are modeled in a more general sense. In this approach,
during the injection of a fault into the result of a specific im-
portant operation inside of the algorithm – in the case of an
iterative solver (i.e. FGMRES) this could be a sparse matrix-
vector multiply or in the application of the preconditioner –
instead of flipping a bit inside of the resultant data structure, a
study ([11]) was conducted to quantify the impact of a single
bit flip and this analysis was used in [8] in order to create a
numerical soft fault model that injects a fault in a more gen-
eral sense. This fault injection methodology is described fully
in section 4.1.

In the classification of soft faults that is presented in [9, 12],
soft faults are divided into the following three categories
based upon how they effect (and continue to effect) program
execution: transient, sticky, and persistent. Transient faults
are defined as faults that occur only once, sticky faults in-
dicate a fault that recurs for some period of time but where
computation eventually returns to a fault-free state, and per-
sistent faults arise when the fault is permanent. Note that a
fault in any of these three classifications should be detectable
during program execution, and as such, it should be possible
to ameliorate the negative impact caused by the fault.

Scenarios that could cause a persistent fault include a stuck
bit in memory, or the Intel Pentium FDIV bug [9, 7]. Tradi-
tional analysis of potential persistent type errors has rested
more in the hardware domain than in the algorithmic domain,
with analysis of both processor based faults [13, 2] and mem-
ory based faults [19]. An example of a situation that can cre-
ate a sticky fault, that is provided in [12], is the incorrect copy
of data from one location to another. The incorrect bit pattern
present in the faulty copy of the data will remain incorrect
for an indefinite amount of time, but will be corrected if and
when the data is copied over again – assuming that the later
copy routine executes correctly. It is also important to note
that in the case of a sticky fault, the fault can be corrected by
means of a direct action. Transient errors are typically caused
by solitary bit flips, which may be caused by different issues

(e.g. radiation, hardware malfunction, data cache set incor-
rectly, etc).

Whether research chooses to model faults using bit flips or
adopt a more numerical approach, much of the previous work
on the impact of silent data corruption (SDC) has to do with
the modeling of transient errors. The goal of the study that is
detailed here is to adapt both a numerical soft fault model for
transient soft faults and a perturbation based soft fault model
for persistent soft faults so that each of the two models is
capable of modeling the potential impact of a sticky fault.

3. BACKGROUND
In this section, a brief background of both the GMRES al-

gorithm with flexible preconditioning (FGMRES) is given,
and then an overview of the two preconditioners that were
focused on in this study is provided.

3.1. FGMRES
The FGMRES algorithm, as described in [15], is provided

in Algorithm 1. FGMRES is similar in its nature to the stan-
dard GMRES with the notable exception of allowing the pre-
conditioner to change in each iteration by storing the result
of each preconditioning operation (cf. matrix Zm in line 11).
FGMRES was selected in this study because it is a robust,
popular iterative solver which is proven to converge under
variable preconditioning - including converging in situations
where the variable preconditioning comes as a result of some
sort of perturbation or anomaly in the preconditioning oper-
ation. In this study specifically, such a perturbation is due to
injected faults via one of the two fault models that is used in
the experiments.

Input: A Linear system Ax = b and an initial guess at the
solution, x0

Output: An approximate solution xn for some n≥ 0
1 r0 := b−Ax0,
2 β := ||r0||2,v1 := r0/β

3 for j = 1,2, . . . ,m do
4 z j = M−1

j v j

5 w = Az j
6 for i = 1, 2, . . . , j do
7 hi, j := w · vi
8 w := w−hi, jvi

9 end
10 h j+1, j := ||w||2,v j+1 := w/h j+1, j
11 Zm := [z1, . . . ,zm], H̄m := hi, j1≤i≤ j+1;1≤ j≤m
12 end
13 ym := argminy||H̄my−βe1||2,xm := x0 +Zmym
14 if Convergence was reached then return xm
15 else go to to Line 1

Algorithm 1: FGMRES as given in [15]



In particular, faults were injected at two distinct points in-
side of the FGMRES algorithm; line 1, termed here as the
outer matvec operation, and line 4, which is the application
of the preconditioner.

3.2. Preconditioners
A transformed preconditioned system writes the general

linear system of equations, Ax = b, in the form M−1Ax =
M−1b, when preconditioning is applied from the left, and
AM−1y = b with x = M−1y, when preconditioning is applied
from the right. The matrix M is a nonsingular approximation
to A, and is called the preconditioner. Incomplete LU fac-
torization methods (ILUs) are an effective class of precon-
ditioning techniques for solving linear systems. They write
in the form M = L̄Ū , where L̄ and Ū are approximations of
the L and U factors of the standard triangular LU decompo-
sition of A. The incomplete factorization may be computed
from the Gaussian Elimination (GE) algorithm, by discard-
ing some entries in the L and U factors. In the ILUT precon-
ditioner used in these experiments, a dual non-zero threshold
(τ,ρ) is used where all computed values that are smaller than
τ||ai||2 are dropped - where ||ai||2 is the l2-norm of a given
row of the matrix A, and only the largest ρ elements of each
row are kept.

In a given linear system, if m of the independent unknowns
are numbered first, and the other n−m unknowns last, the
coefficient matrix of the system is permuted in the resulting
2×2 block structure. In multi-elimination methods, a reduced
system is recursively constructed from the permuted system
by performing a block LU factorization of PAPT of the form

PAPT =

(
D F
E C

)
=

(
L 0
G In−m

)
×
(

U W
0 A1

)
where D is a diagonal matrix, L and U are the triangular fac-
tors of the LU factorization of D, and A1 = C−ED−1F is
the Schur complement with respect to C, In−m is the iden-
tity matrix of dimension n−m, denoted by G = EU−1 and
W = L−1F . The reduction process can be applied another
time to the reduced system with A1, and recursively to each
consecutively reduced system until the Schur complement is
small enough to be solved with a standard method. The factor-
ization above defines a general framework which accommo-
dates for different methods. The Algebraic Recursive Mul-
tilevel Solver (ARMS) preconditioner [18] uses block inde-
pendent sets to discover sets of independent unknowns and
computes them by using the greedy algorithm. In the ARMS
implementation used here, the incomplete triangular factors
L̄, Ū of D are computed by one sweep of ILU using dual non-
zero thresholds (ILUT) [16]. In the second loop, an approx-
imation Ḡ to EŪ−1 and an approximate Schur complement
matrix Ā1 are derived. This holds at each reduction level. At

the last level, another sweep of ILUT is applied to the (last)
reduced system.

4. FAULT MODELS
In this section, a description of each of the fault models that

are included in the comparison is provided. Particular note
is made to distinguish each of the models from one another.
As noted earlier, the two main sticky fault models that were
utilized in this study were an adapted version of the numer-
ical soft model presented in [8, 9, 10] - termed “Numerical
Soft Fault Model” (NSFM) due to the origins of this model
in seeking a numerical estimation of a fault (rather than mod-
eling faulty behavior directly), and an adapted version of the
model given in [6] - which will be referred to as the “Pertur-
bation Based Soft Fault Model” (PBSFM) due to its modeling
of faults as small random perturbations. A fuller description
of each of the two soft fault models follows in the next two
subsections.

4.1. Numerical Soft Fault Model
The approach given by detailed in [8, 9, 10] generalizes the

simulation of soft faults by disregarding the actual source of
the fault and allowing the fault injector to create as large or
as small a fault as necessary for the experiment. In the exper-
iments conducted in [8, 9, 10] faults are typically defined as
either:
• a scaling of the contribution of the result of the precon-

ditioner application for the Message Passing Interface
(MPI) process in which a fault was injected,
• a permutation of the components of the vector result of

the preconditioner application for the MPI process in
which a fault was injected,

or a combination of either of these two effects. Note that if α

is the scaling factor used, and if x is the original vector and if
x̂ is the vector with a fault injected into it that we have three
scenarios:

1. α = 1: ||x||2 = ||x̂||2
2. 0≤ α < 1: ||x||2 > ||x̂||2
3. α > 1: ||x||2 < ||x̂||2
The adaptation that was made to extend this model to be

applicable in a “sticky” sense was to inject a fault into a sin-
gle MPI process in the exact same manner for every iteration
that occurred while the persistent fault was being simulated
to have occurred. That is, if a sticky fault was determined to
be in effect for the first 100 iterations of a run of the iterative
solver, on each iteration.

The analysis that was performed in [8, 9, 10] details the
impact of the NSFM in the case where it is modeling transient
soft faults with various scaling values. The impact of this fault
model relative to the impact of a single bit flip is given in [8]
and shows that regardless of where the bit flip occurs, the
NSFM will perform comparably to the worst case scenario



induced by a traditional bit flip. Analysis to show the impact
of a bit flip based on where in the storage of a floating point
number it occurs is given by [11].

4.2. Perturbation Based Soft Fault Model
The approach proposed in [6] is similar in spirit to the

NSFM proposed above. It selects a single MPI process and
injects a small random perturbation into each element of the
vector. That is, if the vector to be perturbed is x and the size
of the perturbation based fault is ε than to inject a fault, then
generate a random number in the range rε ∈ (−ε,ε) and set
xi = xi + rε for all i. The resultant vector, call it x̂, is thus per-
turbed away from the original vector x.

Since the FGMRES algorithm works at minimizing the l2

norm of the residual, and this can be directly effected by the
l2 norm of certain steps inside of the FGMRES algorithm,
there are three variants to the PBSFM:

1. The sign of xi is not taken into account. In this variant,
||x||2 ≈ ||x̂||2.

2. If xi ≥ 0 then rε ∈ (−ε,0) and if xi < 0 then rε ∈ (0,ε).
Here, ||x||2 ≥ ||x̂||2.

3. If xi ≤ 0 then rε ∈ (−ε,0) and if xi > 0 then rε ∈ (0,ε).
Here, ||x||2 ≤ ||x̂||2.

Using these three variants allows the PBSFM to possess
some level over the l2 norm of the vector that it is injecting
a fault into, and therefore an added level of control on how a
fault may affect the convergence of the FGMRES algorithm.

4.3. Comparison of Soft Fault Models
In looking to see which of the two fault models induces

a “larger” fault, then in general it will be the case that the
NSFM will create a larger difference between a given data
structure with a fault injected and the same data structure in a
fault free environment.

Examining this for the test problem (section 5.1.) used in
these experiments, the result of the outer matvec operation is
a zero vector initially and as FGMRES progresses closer to
the solution, this vector will begin to approach the original
right hand side of the equation, b. In this problem, the entries
in the final iterates of Axi before convergence will have en-
tries, bi, where −0.01≤ bi ≤ 0.01 forms a loose bound on all
entries of b = Axi. To show the potential difference in mag-
nitude between a given vector b and a vector b̂ representing
the vector b with a fault injected, 10000 random vectors were
generated in MATLAB for vectors b of varying sizes (to rep-
resent varying problem sizes) and the l2 norm of |b− b̂| was
calculated for each of the two fault models. These results are
shown in table 1.

Additionally, the NSFM allows slightly more exact state-
ments to be made concerning the effect of the injected fault
on the l2-norm, as the l2-norm will be the exact same for all

Vector Size ||b− b̂||2 - NSFM ||b− b̂||2 - PBSFM
10 2.2223 9.0351e-04

100 5.1826 0.0029
1,000 17.1997 0.0091

10,000 53.8458 0.0289
100,000 172.3676 0.0913

1,000,000 543.9308 0.2887
Table 1. Difference in the effect of each of the fault models
on random vectors with values similar to those found in the
result of the outer matvec operation. Note: The scaling factor
in the NSFM was set to 1.0 and the fault size in the PBSFM
was set to 5× 10−4. Columns 2 and 3 represent average dif-
ferences over 10,000 runs.

but the effected subdomains, where the l2-norm of that sec-
tion is controlled explicitly. However, the size of the fault –
measured as a difference from a fault free run – is in general
dependent only on problem size in the case of the NSFM. On
the other hand, statements concerning the l2-norm are inher-
ently less exact when the PBSFM is used, as the l2-norm of
the faulty subdomain is not precisely controlled, but the dif-
ference from a fault free run - i.e. the “size” of the fault - is
easier to control by way of simply adjusting the bounds on
the perturbation that is used.

In general, one of a limited number of outcomes is most
likely to occur when a fault occurs during the execution of an
iterative solver ([8, 3]).
• The solver will converge in the approximately the same

number of iterations, with an error in the final solution.
• The solver will converge in the approximately the same

number of iterations, with no error in the final solution.
• The solver will converge in more iterations than in a fault

free run; with or without an error in the final solution.
• The progress of the solver towards the solution will stag-

nate, and it will fail to converge.

5. RESULTS AND ANALYSIS
In this section, the results of the experiments that were con-

ducted are given; the results are presented as a comparison of
the effects of a sticky soft fault as modeled by both the PB-
SFM and the NSFM. First, a brief summary of both the test
problem and the test environment that were utilized in this
experiment is given.

5.1. Test Problem
The test problem that was used comes directly from the

pARMS library [14], and represents the discretization of the
following elliptic 2D partial differential equation,

−∆u+100
∂

∂x
(exyu)+100

∂

∂y
(e−xyu)−10u = f



on a square region with Dirichlet boundary conditions, using
a five-point centered finite-difference scheme on an nx× ny
grid, excluding boundary points. The mesh is mapped to a
virtual px× py grid of processors, such that a subrectangle of
rx = nx/px points in the x direction and ry = ny/py points in
the y direction is mapped to a processor.

The size of the problem was varied and controlled by
changing the size of the mesh that was used in the creation
of the domain. The mesh sizes that were considered corre-
sponded to a “small” problem of nx = ny = 200 and a “large”
problem variant with nx = ny = 400. Both of these two prob-
lem sizes were run on a px = py = 20 grid of 400 total pro-
cessors. This leads to problem sizes of,
• Small: n = px× py×nx×ny = 64,000,000
• Large: n = px× py×nx×ny = 16,000,000

As pointed out in section 4.3. the NSFM creates larger faults
in some sense for larger problem sizes, whereas the size of the
fault injected by the PBSFM scales much more evenly with
problem size.

5.2. Test Environment
The test environment that was used was the Turing Cluster

found at Old Dominion University. The Turing Cluster fea-
tures a grand total of 22,880 processor cores and 3,060 GB
of memory spread across a grand total of 163 nodes. For the
purposes of these experiments, all of the experiments were
conducted on a subset that contained 400 cores.

5.3. Experiment Description
All of the trials were run on both the small and large prob-

lem sizes detailed above in section 5.1. in three sets of sce-
narios: a fault-free run, a series of runs using the NSFM and a
series of runs using the PBSFM. For the NSFM, the variable
that will have the largest impact upon the fault injected is the
scaling factor, α, while for the PBSFM the largest contributor
to the impact of the fault is the size of the perturbation that is
added, ε. For these experiments, three values of both α and ε

were used: α = 1/2,1,2, and ε = 1e−3,5e−4,1e−4.
All three variants of the PBSFM were utilized. To compare

with the runs of the NSFM using α = 1/2, the variant of the
PBSFM that minimizes l2 norm was used, to compare with
the runs of the NSFM using α = 1 the version of the PBSFM
that leaves the l2 norm approximately the same was used, and
to compare with the version of the NSFM using α = 2 the
form of the PBSFM that maximizes the l2 norm was used.

As sticky soft faults are defined as being present for a cer-
tain duration and then being naturally corrected at some point
during program execution, sticky faults were defined to be
present during the first 1000 iterations of the iterative solvers
execution. The number of iterations required for convergence
in a fault-free environment is a factor of many variables the
small problem used here converged in roughly 1500 iterations

in a fault-free environment, and the large problem converged
in approximately 3500 iterations for the set of parameters that
were used in this study. Determining more exact bounds for
the start and stop times for the injection of a sticky fault based
on analysis of potential causes of sticky faults is a direction
for future work. Lastly, as both fault models that were in-
cluded in these experiments have an element of randomness
all runs of FGMRES were performed multiple times and an
average of the results that were found was taken.

5.4. Results
Throughout this section, the effects on the ARMS precon-

ditioner will be provided in blue, while the effects on the
ILUT preconditioner will be given in red. Due to space con-
siderations, plots are only presented for the neutral l2-norm
variants of the fault models in figs. 1 to 4, while extended,
full results are provided in tables 2 and 3 for all other ex-
periments. Each figure shows five different fault methods: a
nominal (fault-free) run, a PBSFM run with a “small” fault
(1e-4), a PBSFM run with a “medium” fault (5e-4), and a
PBSFM with a “large” fault (1e-3).

The first plots that are shown, in fig. 1, depict the effects of
the various soft fault model combinations and the effects they
have on the small version of the problem in the case of the
neutral (with respect to the l2-norm) variants of the model.
To be specific, this involves the variants of the PBSFM where
the faults are centered about 0, and the version of the NSFM
where the scaling factor, α, is set to 1.

In these images it is apparent that, for the neutral variants of
the soft fault models, for both the ARMS and ILUT precondi-
tioners, the NSFM has a more negative effect on the conver-
gence of the FGMRES algorithm than the PBSFM - at least
for all of the parameter combinations that were considered.

Figure 1. Soft fault comparison on total number of iterations
for the small problem for faults injected at the outer matvec
operation. ARMS preconditioner on the left (blue), ILUT pre-
conditioner on the right (red). Fault methods are displayed
along the x-axis and total iterations required for convergence
are represented by the y-axis.

Next, in fig. 2, the results for both soft fault models are
shown for the small problem in the case where the faults are
injected into the second fault location, the result of the appli-



cation of the preconditioner. Again, the plots that are shown
for this set of results represent the neutral l2-norm variants.

Figure 2. Soft fault comparison on total number of iterations
for the small problem for faults injected at the application of
the preconditioner. ARMS preconditioner on the left (blue),
ILUT preconditioner on the right (red). Fault methods are dis-
played along the x-axis and total iterations required for con-
vergence are represented by the y-axis.

All of the remaining results for the experiments that were
conducted on the “small” problem are provided in table 2.
Note that the results in table 2 are again color coded so that
the blue lines represent the results associated with the ARMS
preconditioner, and the red lines represent the results corre-
sponding to the ILUT preconditioner.

l2 PBSFM (S) PBSFM (M) PBSFM (L) NSFM
= 1424 1501 1870 2610
– 2238 2241 2232 2541
+ 1605 1611 1616 2596
= 1359 1728 2289 2361
– 2314 2258 2291 2315
+ 2173 2360 2180 2380
= 1587 1651 1773 2707
– 2346 2342 2232 2737
+ 1870 1859 1875 2749
= 1542 1993 2466 2522
– 2366 2372 2403 2539
+ 2312 2400 2298 2570

Table 2. Full results for the small problem for faults injected
into the outer matvec operation (above the line) and the pre-
conditioning operation (below the line) with the ARMS pre-
conditioner (blue) and ILUT preconditioner (red). “=” repre-
sents the neutral l2-norm variant of all models, “–” represents
the model variants that decrease l2-norm, and “+” represents
the versions of the model that increase l2-norm.

In the next set of images, shown in fig. 3, results are given
for the simulated injection of faults into the outer matvec op-
eration on the large problem size. As before, the plots reflect
the versions of the fault models that are designed to not effect
the l2 norm. As in fig. 1, the results shown in fig. 3 show a
steady increase in the delay in the convergence of the FGM-
RES iterative solver from the nominal case, to the PBSFM

l2 PBSFM (S) PBSFM (M) PBSFM (L) NSFM
= 3246 3820 3974 4787
– 3583 3580 3642 4755
+ 4066 4057 4055 4764
= 3096 4014 4163 3921
– 4207 4159 3939 3957
+ 4374 4079 4367 4053
= 3756 4610 4739 5526
– 4232 4139 4828 5500
+ 4836 4827 4828 5502
= 3452 4781 4707 4561
– 4833 4549 4733 4554
+ 4990 4538 5007 4540

Table 3. Full results for the large problem for faults injected
into the outer matvec operation (above the line) and the pre-
conditioning operation (below the line) with the ARMS pre-
conditioner (blue) and ILUT preconditioner (red). “=” repre-
sents the neutral l2-norm variant of all models, “–” represents
the model variants that decrease l2-norm, and “+” represents
the versions of the model that increase l2-norm.

(ordered by the increasingly sized faults), to the faults simu-
lated by the NSFM.

Figure 3. Soft fault comparison on total number of iterations
for the large problem for faults injected at the outer matvec
operation. ARMS preconditioner on the left (blue), ILUT pre-
conditioner on the right (red). Fault methods are displayed
along the x-axis and total iterations required for convergence
are represented by the y-axis.

In the last set of plots, shown in fig. 4, results are given for
the injection of faults into the result of the preconditioning
operation for the large problem size using the neutral l2-norm
variants of both of the soft fault models. These results show
the one instance where the “large” fault size associated with
the PBSFM (1e−3) causes a larger delay in the convergence
of the FGMRES solver than the corresponding runs of the
NSFM. This effect was seen for all l2-norm variants of the
PBSFM, although only the neutral variant is shown in fig. 4.
The details of the results for all of the other experiments that
were run on the large problem are given in table 3. As in ta-
ble 2, the results are colored so that the runs with the ARMS
preconditioner are marked with blue and the runs with the



ILUT preconditioner are denoted with red in table 3.

Figure 4. Soft fault comparison on total number of iterations
for the large problem for faults injected at the application of
the preconditioner. ARMS preconditioner on the left (blue),
ILUT preconditioner on the right (red). Fault methods are dis-
played along the x-axis and total iterations required for con-
vergence are represented by the y-axis.

5.5. Comparison and Analysis
In a fault-free environment the use of the ARMS precon-

ditioner caused the FGMRES algorithm to converge in fewer
iterations than the use of the ILUT preconditioner did. This
remained true when faults were injected into the application
of the preconditioner, but the injection of faults into the outer
matvec operation caused FGMRES to converge in roughly
the same number of iterations whether it was preconditioned
with ILUT or with ARMS. This suggests that for faults occur-
ing at the outer matvec operation, the advantage of the ARMS
preconditioner is not as present as it is elsewhere.

Next, faults injected into the outer matvec operation had a
larger impact than identical faults injected into the result of
the application of the preconditioner. This was seen in runs
using both the ILUT and the ARMS preconditioners. Similar
results were seen in [6]. In addition, the impact of the faults
injected by each of the two soft fault models studied on the l2-
norm seems to be more pronounced in the PBSFM; although,
this is clearly adjustable through the use of the parameters
available to both soft fault models and using larger values for
α in the NSFM may provide a better comparison.

When comparing the two fault models presented here di-
rectly, it is evident that the NSFM has a larger negative im-
pact on the convergence of the iterative FGMRES than the
PBSFM in most scenarios. In every instance tested except for
preconditioner faults on the larger problem size, the compara-
ble version of the NSFM delayed convergence longer than the
PBSFM. This is in part due to the fact that the NSFM moves
the vector that it is injecting a fault into much farther from
its original location than the PBSFM (see section 4.3.). Also
worth noting is that in all instances, the FGMRES algorithm
was able to converge successfully to the correct solution de-
spite the presence of a sticky fault for the first 1,000 iterations
of execution.

For recurring faults specifically, the PBSFM offers a
greater level of fine-tuned control over the impact of the
fault, as the size of the fault that is injected on each iteration.
However, the size of the fault in the PBSFM does not seem to
have as large of an impact on the convergence of FGMRES
on the runs that attempted to manipulate the l2-norm. Also,
due in part to the results in section 4.3., the expectation
was that the NSFM would delay convergence of an iterative
solver significantly more than the PBSFM (for the particular
model input parameters chosen); while this is true for the
case of faults injected into the outer matvec operation, it
appears that the PBSFM causes more of a problem with
convergence for FGMRES than the NSFM for faults injected
into the result of the application of the preconditioner.

6. SUMMARY AND FUTURE WORK
In this paper, the results of a comparison between two pre-

liminary sticky soft fault error models has been given and an-
alyzed. It is hoped that analyses such as this can contribute
to the formation of algorithm based fault tolerance (ABFT)
techniques to combat the effects of all possible of variants of
soft faults in the future. In order to formulate effective ABFT
techniques, the first step would be to develop a reliable fault
detection mechanism; however, the two fault models explored
in this study each present their unique respective challenges
in fault detection, and a fault detection designed towards one
of the fault models may not necessarily work when applied to
faults generated by the other. Using the data from each series
of runs to generate the most generalized fault detection tech-
nique possible would have the farthest reaching impact and is
a direction for future work.

Additionally, it would be beneficial to better quantify the
potential impact of both sticky and persistent faults that orig-
inate in a real-world environment. Doing so could help make
more precise the simulation of both sticky and persistent soft
faults, aiding in soft fault simulation and the development of
ABFT techniques. It would also be helpful to examine the
impact of both of these modified fault models on multiple
subdomains; they both define faults to effect a single subdo-
main (i.e. a single MPI process) at a time, but it is possible
that a real world fault could effect multiple subdomains and
the impact of this potential event could be explored. For the
transient case, this has been explored in [8, 9, 10]. It may also
prove helpful to consider a wider range of scaling factors for
the NSFM, as well as a wider range of fault sizes for the PB-
SFM in order to cover a larger spectrum of potential impacts
due to the presence of faults.
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