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Abstract

This paper presents an investigation into the use of various mechanisms for improving the resilience of the fine-grained
parallel algorithm for computing an incomplete LU factorization. These include various approaches to checkpointing as
well as a study into the feasibility of using a self-stabilizing periodic correction step. Results concerning convergence
of all of the self-stabilizing variants of the algorithm with respect to the occurrence of faults, and the impact of any
sub-optimality in the produced incomplete L and U factors in Krylov subspace solvers are given. Numerical tests
show that the simple algorithmic changes suggested here can ensure convergence of the fine-grained parallel incomplete
factorization, and improve the performance of the resulting factors as preconditioners in Krylov subspace solvers in the
presence of transient soft faults.
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1. Introduction

Self-stabilizing methods are generally defined as those
that return a system to a valid state within some finite
number of steps [1]. As pointed out in [1], the self-stabilizing
property provides a means for fault tolerance; if a non-5

persistent fault occurs, the self-stabilizing method should
be able to correct any impact of the fault in such a way
that the algorithm will still converge. This work provides
an extension of the study presented in [2] following the
spirit of [1].10

On future exascale platforms, the expected increase in
the number of faults is expressed in [3, 4, 5, 6]. Self-
stabilizing methods form a superset of traditional check-
point based fault-tolerance schemes that also include other
mechanisms for resilience that may offer several advan-15

tages. The use of a periodic correction step [1] is one such
alternative class of method that offers several advantages.
First, these methods provide a way to avoid the cost of
checkpointing itself which has been suggested to be pro-
hibitively high on future exascale platforms [4, 6]. Second,20

they do not necessarily rely on any sort of fault detec-
tion. If a fault is not detected successfully in a traditional
checkpointing algorithm it can cause catastrophic effects;
a self-stabilizing method based upon a periodic correction
step should be designed in such a way that it will return25

a valid answer without falling back on traditional fault
detection mechanisms.
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One major domain area for High Performance Comput-
ing (HPC) is sparse linear solvers, specifically Krylov sub-
space solvers. To help improve the performance of these30

solvers, a preconditioner is typically used. One of the most
commonly used classes of preconditioners is incomplete
LU factorization. Future HPC environments are likely to
include a heterogeneous mixture of computing resources
containing different types of accelerators (e.g., GPUs and35

MICs), and therefore algorithms that can take advantage
of the computing structure of accelerators naturally will
be advantageous. The fine-grained parallel incomplete LU
(FGPILU) algorithm proposed in [7] is such an algorithm.

In order to devise routines resilient to faults, it is im-40

portant to classify the potential impacts that can be caused
by a fault. Faults can be divided into those that cause im-
mediate program interruption (hard faults) and those that
do not (soft faults) (e.g., [8]). Soft faults typically refer to
some form of data corruption; often manifesting as bit-45

flips. This paper examines the potential impact of soft
faults on the FGPILU factorization, and also investigates
the use of preconditioners generated by the FGPILU algo-
rithm (and the self-stabilizing variants presented here) on
Krylov subspace solvers.50

This work presents an extension of the work performed
in [7]. The extensions presented in this work are: an ex-
pansion of the discussion of related work throughout the
paper to incorporate recent research efforts more thor-
oughly, an extended discussion on the convergence of both55

the nominal FGPILU algorithm as well as the variants
presented here (c.f. Section 3 and Section 4), discussion of
additional variants to the FGPILU algorithm (in particu-
lar: Algorithm 2, and Algorithm 6), and an extension to
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the fault model that is used to incorporate bit flips directly60

(vice solely using a numerical simulation of soft faults) in
order to ensure that the worst case of a soft fault (i.e.
a bit flip of sign or exponent bit) is properly captured
(see Section 5.1). The numerical results (Section 5) have
been updated and expanded to address the new changes65

throughout the body of the paper, and the outlook towards
future directions has been updated as well.

The structure of this paper is organized as follows: in
Section 2, a brief summary of some related studies is pro-
vided, in Section 3, background information is provided70

for the FGPILU algorithm, in Section 4, the titular self-
stabilized variant(s) of the FGPILU algorithm are devel-
oped, in Section 5, a series of numerical results are pro-
vided, while Section 6 provides a summary and future di-
rections.75

2. Related Work

The expected increase in faults for future HPC sys-
tems is detailed in [3, 4, 5, 6]. An initial look into fault
tolerance for the FGPILU algorithm is provided in [2].
The self-stabilizing variants of the FGPILU algorithm us-80

ing a periodic correction step that are introduced here are
inspired by the self-stabilizing iterative solvers presented
in [1], which in turn are built upon the ideas of selective
reliability [8, 9]. The work done in this study to show
the effectiveness of iterative methods when using a (possi-85

bly faulty) FGPILU preconditioner on a Krylov subspace
solver is done using the Conjugate Gradient (CG) algo-
rithm [10]. The analysis of the potential performance of a
Krylov subspace method using a potentially sub-optimal
FGPILU algorithm is related to the analysis in [1]. The90

results for the experiments conducted for this effort are
presented similarly to the results in [7, 11], but with more
of a focus on the impact that a soft fault can have on the
execution of both the FGPILU algorithm itself and the
performance of the generated factors in Krylov subspace95

methods.
Several numerically based fault models have been uti-

lized in recent studies. These include a perturbation-based
fault model that injects a random perturbation into every
element of a key data structure [12], and a numerical fault100

model that is predicated on shuffling the components of
an important data structure [13]. Other numerical mod-
els, such as inducing a small shift to a single component of
a vector have been considered as well [8]. Comparisons be-
tween various numerical soft fault models have been made105

in [14, 15]. The fault model used in this paper is a combi-
nation of a modified version of the one initially developed
in [12] (related to the fault model developed in [13]) that
was used in [2] and a simple model that flips bits directly.
Details on the fault model used here are provided in Sec-110

tion 5.1.
Fault tolerance for fine-grained parallel methods is an

area seeing increased research activity. An initial explo-
ration of fault tolerance for the FGPILU factorization stud-

ied here is provided in [2], and an exploration of resilience115

for stationary iterative linear solvers (i.e. Jacobi) is given
in [16] and expanded on in [17]. A more general explo-
ration of fault tolerance for fine-grained methods is pro-
vided in [18].

3. Fine-Grained Parallel Incomplete LU Factoriza-120

tion

The fine-grained parallel incomplete LU (FGPILU) fac-
torization approximates the true LU factorization and writes
a matrix A as the product of two factors L and U where,
A ≈ LU . Normally, the individual components of both125

L and U are computed in a manner that does not allow
easy use of parallelization. The recent FGPILU algorithm
proposed in [7] allows each element of both the L and
U factors to be computed independently. The algorithm
progresses towards the incomplete LU factors that would130

be found by a traditional algorithm in an iterative man-
ner. To do this, the FGPILU algorithm uses the property
(LU)ij = aij for all (i, j) in the sparsity pattern S of the
matrix A, where (LU)ij represents the (i, j) entry of the
product of the current iterate of the factors L and U . This135

leads to the observation that the FGPILU algorithm (given
in Algorithm 1) is defined by the following two non-linear
equations:

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
, uij = aij −

i−1∑
k=1

likukj . (1)

Following the analysis presented in [7], it is possible to
collect all of the unknowns lij and uij into a single vector140

x, then express these equations as a fixed-point iteration,

x(p+1) = G
(
x(p)

)
(2)

where the function G implements the two non-linear equa-
tions described above. The FGPILU algorithm is given in
Algorithm 1. Keeping with the terminology used in [7, 11]

Algorithm 1: FGPILU algorithm as given in [7]

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 for (i, j) ∈ S do in parallel
3 if i > j then

4 lij = (aij −
∑j−1
k=1 likukj)/ujj

5 else

6 uij = aij −
∑i−1
k=1 likukj

each pass the algorithm makes in updating all of the lij145

and uij elements (alternatively: each element of the vec-
tor x) is referred to as a “sweep”. After each sweep of
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the algorithm, the L and U factors progress towards con-
vergence. At the beginning of the algorithm, the factors
L and U are set with an initial guess. In this study, the150

initial L factor will be taken to be the lower triangular
part of A and the initial U will be taken to be the upper
triangular portion of A (as in [7, 2, 19]. Adopting the tech-
nique used in [7, 11, 2], a scaling of the input matrix A is
first performed such that the diagonal elements of A are155

equal to one. As pointed out in [7], this diagonal scaling
is imperative to maintain reasonable convergence rates for
the algorithm, and the working assumption in this paper
is that all matrices have been scaled appropriately.

3.1. Convergence of the Fine-Grained Parallel Incomplete160

LU Factorization

In a fault-free environment, it can be proven that the
FGPILU algorithm is locally convergent in both the syn-
chronous and asynchronous cases (see Section 3 of [7]). A
few details of this analysis are recreated here since they165

will be pertinent to the effort of showing that the self-
stabilizing variants are convergent.

The analysis to show convergence of the FGPILU algo-
rithm relies on properties of the Jacobian associated with
the non-linear mapping defined by G : Rm → Rm where m170

represents the number of non-zero terms in the matrix A.
In order to discuss the properties of this function and it’s
Jacobian, it is necessary to define an order on the elements
that make up the vector x upon which G operates. Every
element in x is one of the non-zero elements in the original175

input matrix, A. The following definition formalizes this
concept.

Definition 1. An ordering of the elements mij ∈ M is
a bijective function from the sparsity pattern S of M to
the set 1, 2, . . . , N . Formally, this is a map T : S →180

1, 2, . . . , N .

Specifically, it is of interest to have an ordering that
orders the elements in the order they would be updated
following a traditional Gaussian Elimination style process.
This can be described as follows:185

• The first row of M

• The remainder of the first column of M

• The remainder of the second row of M

• The remainder of the second column of M

• · · ·190

The following definition captures this more precisely:

Definition 2. A Gaussian Elimination partial ordering of
the elements mij ∈M is a partial ordering of the elements
in the sparsity pattern, S, of M (using MATLAB style
notation):

(1, 1 : n)∩S < (2 : n, 1)∩S < · · · < (k+1 : n, k)∩S < (n, n)

In particular, an ordering g will map a pair of (i, j)
coordinates specifying the location of a non-zero term in
A to an index of the vector x. That is,

xg(i,j) =

{
lij i > j

uij i ≤ j

Given this, the two non-linear equations that define the
FGPILU algorithm (Eq. (1)) can be rewritten so that,

Gg(i,j) =


1

xg(j,j)

(
aij −

∑
1≤k≤j−1

xg(i,k)xg(k,j)

)
i > j

aij −
∑

1≤k≤i−1

xg(i,k)xg(k,j) i ≤ j

(3)
where both sums are taken over all pairs, (i, k) and (k, j) ∈
S(A).195

The Jacobian itself is written G′(x) = J(G(x)) where
J : R|S| → R|S|×|S| and is defined by the following equa-
tions [7]:

∂Gg(i,j)

∂xg(k,j)
= −

xg(i,k)

xg(j,j)
, k < j

∂Gg(i,j)

∂xg(i,k)
= −

xg(k,j)

xg(j,j)
, k < j

∂Gg(i,j)

∂xg(j,j)
= − 1

x2
g(j,j)

(
aij −

j−1∑
k=1

xg(i,k)xg(k,j)

)

for a row in the Jacobian where i > j (i.e. corresponding
to an unknown lij ∈ L). Conversely, for a row i ≤ j200

(i.e. corresponding to an unknown uij ∈ U), the partial
derivatives are given by,

∂Gg(i,j)

∂xg(i,k)
= −xg(i,k), k < i

∂Gg(i,j)

∂xg(k,j)
= −xg(i,k), k < i

Under the assumption that there is a single fixed point
solution x∗ of the non-linear iteration defined by G(x), the
following Theorem from [20] provides convergence for the205

nominal FGPILU algorithm:

Theorem 1. (Frommer and Szyld) Assume that x∗

lies in the interior of the domain of G and that G is F-
differentiable at x∗. If ρ(G′(x∗)) < 1, then there exists
some local neighborhood of x∗ such that the asynchronous210

iteration defined by G converges to x∗ given that the initial
guess is inside of this neighborhood.

The partial derivatives are continuous and well-defined
anywhere on the domain of G as defined above so G is
F-differentiable on its domain. What remains to be shown215

is that the spectral radius ρ(G′(x∗)) < 1.
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The Gaussian Elimination partial ordering proposed in
Definition 2 leads to the following result from [7] details
the structure of mapping, G, defined by Eq. (3):

Theorem 2 (Chow and Patel). The function G(x) with a
Gaussian Elimination partial ordering has a strictly lower
triangular form. Formally,

Gk(x) = Gk(x1, . . . , xk−1)

This leads to the following related result that also comes220

from Chow and Patel in [7]:

Theorem 3. Given a Gaussian Elimination partial order-
ing for the mapping G(x), the associated Jacobian, J(G(x)),
has a strictly lower triangular structure. In particular, Ja-
cobian has zeros along the diagonal and a spectral radius225

of 0.

where this result can be combined with results from The-
orem 1 to show that there is some neighborhood of the
fixed point of the mapping where the FGPILU algorithm
will converge.230

However, in order to determine if the mapping will con-
verge from its current location in the domain of the map-
ping G defined by Eq. (3) it is necessary to define what it
means for a mapping to be a contraction:

Definition 3. The function G : D ⊆ Rm → Rn is a
contraction on D if there exists a constant α < 1 such
that:

||G(x)−G(y)|| ≤ α||x− y||

for some x, y ∈ D.235

Note that an iterate of the function G, written x ∈ D,
is a collection of all the non-zero values in both L and U .
The form of the Jacobian is determined by the ordering
of the elements inside of x, but the norm of the Jacobian
(for any matrix norm) is associated with the value of the240

elements in the current iterate, x. In particular, the spec-
tral radius of the Jacobian is determined by the (partial)
ordering imposed upon the mapping G, but the norm of
the Jacobian changes as the FGPILU algorithm progresses.
The following helps identify when the fixed-point iteration245

associated with the FGPILU algorithm is a contraction:

Definition 4. The function G : D ⊆ Rm → Rn is a
contraction at the location of the current iterate x∗ ∈ D
if ||J(G(x∗))|| < 1 for some matrix norm || · || and the
domain D ⊆ Rm is convex.250

For the mapping G defined by Eq. (3), the domain is not
necessarily convex, but the norm of the associated Jaco-
bian is still indicative of whether or not the corresponding
fixed-point iteration will converge [7].

With respect to the occurrence of a fault, the fault255

model proposed in this study limits the effects of a fault
to the values stored in L and U and not the coordinates
of the values. As such, it is not possible for a fault (as

defined here) to change the spectral radius of the mapping
associated with the FGPILU algorithm; however, a fault260

can (and often does) change the norm of the corresponding
Jacobian since it changes the values of the entries xi ∈ x.

This leads to the following sequence of computational
steps to identify if the mapping G is still a contraction:

1. Define a Gaussian Elimination partial ordering of the265

elements in L and U

2. Form the Jacobian, J , according to the partial deriva-
tives defined in Section 3

3. Calculate the norm of J as found in step 2

To be clear, if the norm of the Jacobian is less than 1270

and the current iterate is located in a convex portion of
the domain then the mapping is still a contraction and
it will eventually converge; however, if the norm of the
Jacobian is greater then or equal to 1 than the mapping is
not a contraction and further iteration will not bring the275

current iterate, x∗, closer to the fixed point.

4. Self-Stabilizing Fault Tolerance for the FGPILU
Algorithm

Self-stabilizing iterative methods stem from the idea of
creating an algorithm that is capable of starting from any280

state and returning to a valid state within a finite number
of steps. This encompasses both traditional approaches to-
wards resilience such as checkpointing, as well as different
algorithmically based variants.

In [1] a periodic correction step was used to ensure that285

the algorithm being studied returned to a valid state and
would proceed to convergence successfully. The work per-
formed here covers both checkpointing and the use of a
periodic correction step. The goal of the periodic correc-
tion step is that the computation done every F iterations290

in the periodic correction step will sufficiently correct the
course of the algorithm to where it will converge. Note
that a selective reliability mode [8, 9] must be assumed
since the computations performed during the correcting
step need to be executed successfully.295

As discussed in [7], convergence of the FGPILU algo-
rithm is strongly related to the Jacobian of the functional
iteration, G (i.e. Eq. (2)). In order to determine what
steps to take in the correcting block, it is important to
make note of what needs to be accomplished. The map-300

ping defined by G is a contraction if ||G′(x)|| < 1 for
some matrix norm || · ||. Therefore, if the initial guess
x0 has the property that ||G′(x0)|| < 1 then the algo-
rithm should converge so long as the domain is locally
convex. However, if a fault occurs on the f th iteration305

that causes the Jacobian to move into a region of the do-
main where G is no longer a contraction, or the domain is
no longer convex, then subsequent iterations will not aid
in convergence. A naive correction step that constitutes
a hybrid self-stabilizing/checkpointing method is given by310

Algorithm 2.
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Algorithm 2: Naive algorithm for a hybrid self-
stabilizing/checkpointing FGPILU

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 Form the Jacobian of the current iterate, J
4 Evaluate τ = ||J ||
5 if τ < 1 then Continue
6 else
7 Set lij and uij to the last known good

state
8 else
9 for (i, j) ∈ S do in parallel

10 if i > j then

lij = (aij −
∑j−1
k=1 likukj)/ujj

11 else uij = aij −
∑i−1
k=1 likukj

If checkpointing is desired to be excluded entirely from
the process of creating factors L and U with the FGPILU
algorithm, then a failed check will result in a restart using
the initial guess. Two large problems with Algorithm 2315

are:

1. The expense of the correction step. The cost of form-
ing the Jacobian and evaluating its norm may be
restrictive for many problems.

2. The reliance on knowing a previous good state. The320

quick convergence of the algorithm to usable L and
U factors mitigates this issue somewhat since the
original guess can always be reused, but if a higher
level of fidelity is desired than the runtime could be
prohibitively long.325

Convergence of this prototypical algorithm is captured in
the following result.

Theorem 4. For any state of lij ∈ L and uij ∈ U , if a
correction is performed in the kth sweep, and all subsequent
iterations are fault-free then Algorithm 2 will converge.330

Proof. Since the Jacobian at the fixed point of the algo-
rithm has spectral radius less than 1 (see [20]) and the
correcting step of Algorithm 2 ensures that the 1-norm
of the Jacobian associated with the current iterate is less
than 1 – which forces the algorithm to stay in a region335

of the problem domain where the asynchronous mapping
defined by the algorithm is a contraction – Algorithm 2
will converge.

While the method proposed by Algorithm 2 is not com-
putationally viable, it does suggest a mechanism for creat-340

ing a successful self-stabilizing variant of the FGPILU al-
gorithm. First, a bound on the norm of the Jacobian that
can be computed efficiently needs to determined, and then
a correcting mechanism that does not require (pseudo)

checkpointing will need to be created. For the first issue,345

the following result from [7] can be used:

Theorem 5. (Chow and Patel) Given a matrix A and
G as defined above, the 1-norm of the current iterate G′i
can be bounded,

||G′i||1 ≤ max(||Ui||∞, ||Li||1, ||RLi ||1)

where RL is the strictly lower triangular part of R = A−T
and the matrix T is defined by,

Tij =

{
(LU)ij (i, j) ∈ S
0 o/w

However there is still a larger than desirable computa-
tional burden in forming the matrix R = A − T and the
bound itself may not be sharp enough for practical use
since the result is only useful if,350

α = max(||Ui||∞, ||Li||1, ||RLi ||1) < 1 (4)

Development of a periodic correction step based upon
explicit calculation of the Jacobian (or that utilizes prop-
erties of the Jacobian as discussed above) is left as future
work. The following subsections develop a spectrum of re-
silient variants of the FGPILU algorithm. Development of355

traditional checkpointing variants will be examined in the
next two subsections Section 4.1 and Section 4.2, and the
use of a periodic correction step will be examined in the
following two subsections Section 4.3 and Section 4.4.

4.1. Checkpointing360

In this section, some theoretical bounds on the impact
of a fault on the FGPILU algorithm are developed, and
these projected impacts are used to develop checkpointing
based fault tolerant adaptations to the original FGPILU
algorithm. Using the fault model described in Section 5.1,
if a fault occurs at the computation of the kth iterate (af-
fecting the outcome of the (k + 1)st vector), it is possible
to write the corrupted (k + 1)st iteration of x as

x̂(k+1) = G
(
x(k)

)
+ δ , (5)

where the vector r accounts for the occurrence of a fault.
Note that the magnitude of r corresponds only to the soft
fault that was injected and is not a part of the FGPILU
algorithm itself: for a sweep of the algorithm that does
not contain a fault, r = 0. To track the progression of
the FGPILU algorithm, it was proposed in [7] and [11] to
monitor the non-linear residual norm. This is a value

τ =
∑

(i,j)∈S

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ (6)

which decreases as the number of sweeps progresses the
factors produced by the algorithm closer to the conven-
tional L and U factors that would be computed by a tra-
ditional ILU factorization. Alternatively, the ILU residual
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can be considered which evaluates the same difference (i.e.365

the Frobenius norm of A) but over all entries as opposed
to restricting the calculation to the sparsity pattern of S.
Sample values for both the non-linear residual and the
ILU residual for the first few iterations / sweeps of the
FGPILU algorithm on the Apache problem (see Table 2370

for descriptions of the example problems) are given in Ta-
ble 1. Note that the non-linear residual norm will continue
decreasing, but that the ILU residual quickly settles to a
non-zero value.

Sweep Non-linear residual (τ) ILU residual
1 1.05e+02 379.88
2 8.81e+01 376.74
3 2.38e+01 367.10
4 1.36e+01 366.45
5 2.39e+00 366.45
6 1.21e+00 366.45
7 5.24e-01 366.45
8 2.24e-02 366.45
9 1.05e-03 366.45

Table 1: Typical progression of both the non-linear residual norm
and ILU residual norm for the Apache2 test problem.

If a fault occurs on a given sweep then one or both non-
linear equations from the FGPILU algorithm Algorithm 1
will have some amount of error. In particular, the update
equations for lij and uij will become

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
+ δij (7)

uij = aij −
j−1∑
k=1

likukj + δij (8)

where rij represents the component of the vector r that375

maps to the (i, j) location of the matrix. Comparing Eq. (7)
and Eq. (6) shows that if a fault occurs during the com-
putation of the incomplete LU factors that the non-linear
residual norm τ will be affected.

In order to ensure that a fault does not negatively ef-380

fect the outcome of the algorithm, the first checkpoint-
ing variant that is proposed involves a simple monitor-
ing of the non-linear residual norm τ . In principle, since
S ⊂ A, when the FGPILU algorithm converges, the non-
linear residual norm will be at a minimum, τ ≈ 0. Call this385

variant the Checkpoint All variant (CPA-FGPILU). The
pseudo-code for this algorithm is provided in Algorithm 3.

In this case, a fault is declared if the currently com-
puted non-linear residual norm τ (sweep) is some factor α
greater than the previously computed non-linear residual390

norm τ (sweep−r), where r provides a delay that determines
how frequently the factors L and U are stored to mem-
ory. Note that, due to a combination of the asynchronous
nature of the the FGPILU algorithm, the non-linear resid-
ual norm will not be strictly monotonically decreasing, es-395

pecially as the algorithm proceeds closer to convergence.

Algorithm 3: Checkpoint-Based Fault Tolerant FG-
PILU (CPA-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if Fault then
3 Rollback L and U
4 Fault = FALSE
5 sweep = sweep− 1

6 else
7 for (i, j) ∈ S do in parallel
8 if i > j then

lij = (aij −
∑j−1
k=1 likukj)/ujj

9 else uij = aij −
∑i−1
k=1 likukj

10 τij =
∣∣∣aij −∑min(i,j)

k=1 likukj

∣∣∣
11 if τ (sweep) > α · τ (sweep+r) then
12 Fault = TRUE

Therefore using the factor α = 1, i.e., expecting a strict
monotonic decrease, may cause the algorithm to report
false positives, especially when nearing convergence (as
judged by the progression of the non-linear residual).400

4.2. Partial Checkpointing

Next, note that since there is a contribution from every
(i, j) ∈ S, the individual non-linear residual norms for each
(i, j) ∈ S, denoted here by τij , can be defined as

τij =

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ (9)

where the total non-linear residual norm can always be re-
covered by taking the sum of all the individual non-linear
residual norms over all (i, j) ∈ S. To establish a base-
line for fault tolerance, define individual non-linear resid-405

ual norms τij for each (i, j) ∈ S based on the initial guess
that is used to seed the iterative FGPILU algorithm. In
particular, if L∗ and U∗ are the initial guesses for the in-
complete L and U factors, then take l∗ij ∈ L and u∗ij ∈ U
and define baseline individual non-linear residual norms410

τ∗ij using the original values τij and the values l∗ij ∈ L and
u∗ij ∈ U .

Since for each sweep of the FGPILU algorithm, the
components lij ∈ L and uij ∈ U can be computed, by
testing the individual non-linear residual norms it is pos-
sible to determine if a large fault occurred. Specifically,
it is of interest to determine if a fault occurred that was
large enough to cause a potential divergence of the algo-
rithm. To do this, first a tolerance t is set and then a fault
is signaled if

τij > t (10)

since the individual non-linear residual norms are generally
decreasing as the FGPILU algorithm progresses. Set the

6



value t as t = max(τ∗ij) initially (Line 3 of Algorithm 4),
and then update t during the course of the algorithm if
desired. It is also possible to use the previous individual
non-linear residual norms as opposed to a maximum that
is taken across all current non-linear individual norms. In
particular, similarly to the global checkpointing variants
advocated in Section 4.1, a fault can be declared if,

τsweepij > α · τsweep−rij (11)

for similar parameters α and r.
Note that if a fault is signaled by any of the individual

non-linear residual norms, it is only known that a fault oc-415

curred somewhere in the current row of the factor L or the
current column of the factor U . As such, the conservative
approach would require the rollback of both the current
row of L and the current column of U to their values at
the previous checkpoint (e.g., Lines 5 to 9 of Algorithm 4).420

It is possible for the individual non-linear residuals as
defined to increase by a small amount, especially at very
early or very late iterations in the progression of the al-
gorithm. To counteract the potential for reporting false
positives on fault detection, the derivative of the global425

non-linear residual, ∆τ
∆t , can be checked to ensure that it

is also increasing before switching the current row and/or
column (see Line 15 of Algorithm 4). This algorithm is
detailed in Algorithm 4.

Algorithm 4: Checkpoint-Based Fault Tolerant FG-
PILU (CP-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for (i, j) ∈ S do in parallel

2 τij =
∣∣∣aij −∑min(i,j)

k=1 likukj

∣∣∣
3 t = max(τij)
4 for sweep = 1, 2, . . . ,m do
5 if Fault then
6 Set i = maxi,j(k

1
ij) and j = maxi,j(k

2
ij)

7 Rollback {lik}i−1
k=1 and {ukj}j−1

k=1

8 Fault = FALSE
9 sweep = sweep− 1

10 else
11 for (i, j) ∈ S do in parallel
12 if i > j then

lij = (aij −
∑j−1
k=1 likukj)/ujj

13 else uij = aij −
∑i−1
k=1 likukj

14 Compute τ
15 if τij > t and τ ′ > 0 then
16 Set k1

ij = i and k2
ij = j

17 Fault = TRUE

Note that if a fault is detected, the algorithm only re-430

stores (i.e., “rolls back”) the affected row of L and column
of U . Additionally, since in practice it has been proposed

[7, 11] to use a limited number of sweeps of the FGPILU
algorithm as opposed to converging the algorithm accord-
ing to the global non-linear residual norm, the number of435

sweeps conducted is decremented so that all elements of L
and U are updated at least the desired number of times.

While no global communication is required to check for
the presence of a fault via the individual non-linear resid-
ual norms, τij , there is global communication required to440

compute the derivative of the global non-linear residual
norm. A simple (forward) finite difference scheme is used
to approximate this derivative to minimize the global com-
munication required by Algorithm 4. The frequency with
which the global non-linear residual norm is computed can445

be determined independently of the rest of the algorithm.
Specifically, it may be possible to compute these updates
less frequently in order to minimize the communication
that takes place between the different components.

Additionally, if a fault is detected there will be some
communication required between processes in order to fix
the effects of the fault. Since the component detecting a
fault will have to roll back elements that it is not directly
responsible for updating, further computation on all af-
fected elements will have to cease momentarily. Note also
that when using the CP-FGPILU algorithm, the size of the
faults that are not caught by the algorithm are determined
by the tolerance that is set. In particular,

||r|| ≤ t (12)

where r represents a fault that was not caught by the pro-450

posed checkpointing scheme, since if ||r|| > t then the fault
would be caught by the check on Line 15 of Algorithm 4.
This, in turn, affects the update equations Eqs. (5) and (7).

4.3. Periodic Correction Step

The periodic correction step must be computed reli-455

ably regardless of what actions are undertaken during the
periodic correction in order to ensure that the algorithm
will continue to progress towards convergence. In partic-
ular, it cannot be negatively affected by the occurrence of
a fault. Despite the robustness of an explicit check on the460

norm of the Jacobian as proposed in the previous section,
the emphasis in this section will be upon developing vari-
ants of the FGPILU algorithm that are able to mitigate
the impact of a soft fault without requiring the explicit
formation of the Jacobian for the current iterate.465

The first variant of the FGPILU algorithm that makes
use of a periodic correction step is shown in Algorithm 5.
An update sweep is expected every F iterations. The im-
plicit expectation is that the steps that are undertaken
during this periodic correction step will be able to miti-470

gate any potential consequences of a soft fault that occurs
during the prior F − 1 iterations.

Algorithm 5 was designed to correct problems arising
from simple finite difference discretizations of partial dif-
ferential equations. The technique of observing the mag-475

nitude of the elements used in the fixed point iteration
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Algorithm 5: Self-Stabilizing Fault Tolerant FG-
PILU (SS-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 for (i, j) ∈ S do in parallel
4 if {‖lij‖, ‖uij‖} � ‖aij‖ or

|{lij , uij} − aij |/|aij | > β or
{lij , uij} = {0, NaN} then
{lij , uij} = aij

5 if i > j then

lij = (aij −
∑j−1
k=1 likukj)/ujj

6 else uij = aij −
∑i−1
k=1 likukj

7 else
8 for (i, j) ∈ S do in parallel
9 if i > j then

lij = (aij −
∑j−1
k=1 likukj)/ujj

10 else uij = aij −
∑i−1
k=1 likukj

and their relative changed was created after observing the
component-wise progression of all of the elements in the
preconditioning factors that are generated for the discretiza-
tion of the two dimensional Laplacian with a 5-point sten-480

cil. As will be discussed further in Section 4.5 and Sec-
tion 5 this technique will not generalize to all other prob-
lems but may extend to other similar matrices (i.e. sym-
metric positive definite, strongly diagonally dominant, small
bandwidth, etc).485

The next result establishes a convergence property for
the variant of the FGPILU algorithm proposed in Algo-
rithm 5.

Theorem 6. For any state of lij ∈ L and uij ∈ U , if
a correction is performed in the kth sweep, all subsequent490

iterations are fault-free, no elements in the final L and
U factors differ by more than β percent from the original
factors in the matrix A, and β is chosen such that if a
fault occurs a fault is signaled, then the algorithm using a
periodic correction step that is featured in Algorithm 5 will495

converge.

Proof. This follows from noticing that the correcting (or
“stabilizing”) step (Lines 2 to 6 of Algorithm 5) ensures
that the state lij ∈ L and uij ∈ U of the incomplete L
and U factors will be in the original domain of the prob-500

lem and then invoking the convergence arguments for the
original FGPILU algorithm (see [7]) which rely upon the
assumptions and base arguments from [20].

4.4. Component-Wise Periodic Correction Step

The next resilient variant of the FGPILU algorithm to505

be discussed relies on tracking the component-wise pro-
gression of the individual non-linear norms (Eq. (9)) in a

manner similar in spirit to Algorithm 4. Recall from Sec-
tion 4.1 that the individual non-linear residual norms are
not strictly monotonic in their decrease; however, by peri-510

odically checking the progression of the individual τij ’s it
is possible to use them to detect faults without relying on
computation of the global non-linear residual norm which
requires communication between all of the components.
This scheme is detailed in Algorithm 6.515

Algorithm 6: Component-Wise Self-Stabilizing
Fault Tolerant FGPILU (CW-FGPILU)

Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 if sweep ≡ 0 mod F then
3 for (i, j) ∈ S do in parallel

4 if τsweepij > α · τsweep−Fij then

5 Set i = maxi,j(k
1
ij) and

j = maxi,j(k
2
ij)

6 Rollback {lik}i−1
k=1 and {ukj}j−1

k=1

7 else
8 for (i, j) ∈ S do in parallel
9 if i > j then

lij = (aij −
∑j−1
k=1 likukj)/ujj

10 else uij = aij −
∑i−1
k=1 likukj

The CW-FGPILU algorithm variant (Algorithm 6) can
be seen as a modified version of the partial checkpointing
method that is utilized in Algorithm 4 where the check on
the global non-linear residual norm, τ , is omitted but the
frequency of the check on the progression of the individual520

non-linear residual norms τ , is decreased to compensate.
This method can be viewed as a simple modification of the
partial checkpointing scheme that can limit the amount of
communication that takes place between the individual
components in the factors L and U .525

4.5. General Notes on the Convergence of the FGPILU
Variants

The main result concerning the convergence of the FG-
PILU algorithm comes from [20], but this result only guar-
antees a neighborhood of the fixed point (i.e. the final530

incomplete L and U factors) in which the algorithm is
convergent. For certain problems, this neighborhood may
be quite large (in a practical sense), where many different
initial guesses will exhibit good convergence properties. In
such a scenario, a fault may delay convergence by moving535

the current iterate farther away from the fixed point, but
not cause divergence by moving the current iterate outside
of the neighborhood of the fixed point guaranteed by the
main convergence result.

For other problems (specifically with matrices that are540

far from symmetric or highly indefinite) this neighborhood
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may not encapsulate a large portion of the problem do-
main. In this case, care must be taken to use a good
initial guess to get the FGPILU algorithm to converge at
all. Additionally, if a fault does occur it is quite possi-545

ble for the fault to move the current iterate to a location
in the domain where further iterations will not help the
algorithm progress towards convergence.

Convergence of the FGPILU algorithm is closely re-
lated to the Jacobian associated with the non-linear up-550

date equations Eq. (1). If a fault occurs that is not caught
by the fault detection (either the periodic correction step,
or by the fault detection mechanisms in the checkpointing
variants) of the FGPILU, then it is possible for the Jaco-
bian to move to a regime of the domain where the fixed555

point mapping that represents the FGPILU algorithm is
no longer a contraction (i.e. ||J || > 1). In this case, the
fault tolerance mechanisms of the FPGILU variants will
not help, and subsequent iterations of the algorithm will
not aid in convergence.560

The convergence of the checkpoint-based variants of
the FGPILU variants follows directly from the convergence
of the original FGPILU algorithm. Assuming that faults
do not occur after a certain number of sweeps, the algo-
rithm will converge under the assumption that it was suc-565

cessfully returned to a state not affected by a fault. Note
that if a fault is detected, the state is restored to the last
known good state - how recent that state is depends on
the frequency with which the checkpoint is stored. More
frequent storage of a “good” state via checkpointing will570

slow down the overall progression of the algorithm, but will
provide a more recent fail-safe state if a fault is detected.

Additionally, note that an application of the FGPILU
preconditioner is effectively only an approximation of the
conventional ILU preconditioner. The application of the575

generated preconditioners can be expressed as, z̃j ≈ P−1vj .
Both [7, 11] have shown that it is possible to successfully
use the incomplete LU factorization resulting from the FG-
PILU algorithm before it has converged completely – when
convergence is judged by the progression of the non-linear580

residual norm, τ below some threshold tolerance, ε. It is
therefore possible that any adverse affects that a fault may
have on the convergence of the FGPILU algorithm itself
will not have sufficient time to propagate throughout the
entirety of the computed L and U factors to have a mean-585

ingful impact on the performance of the overarching iter-
ative method (e.g. CG, GMRES, etc) that the computed
factors are used as preconditioner for. These potential im-
pacts will be explored numerically in Section 5.

5. Numerical Results590

The experimental setup for this study is an NVIDIA
Tesla K40m GPU on the Turing High Performance Clus-
ter at Old Dominion University. The nominal, fault-free
iterative incomplete factorization algorithms and iterative
solvers were taken from the MAGMA open-source software595

library [21]. All of the results provided in this study reflect
double precision, real arithmetic.

The test matrices that were used predominantly come
from the University of Florida sparse matrix collection
maintained by Tim Davis [22], and the matrices selected600

for this study are the same as the ones that were selected
for the study [11] that detailed the performance of the FG-
PILU algorithm on GPUs without the presence of faults.
There are six matrices selected from the University of
Florida sparse matrix collection, and the two other test605

matrices that were used come from the finite difference
discretization of the Laplacian in both 2 and 3 dimensions
with Dirichlet boundary conditions. For the 2D case, a
5-point stencil was used on a 500 × 500 mesh, while for
the 3D case, a 27-point stencil was used on a 50× 50× 50610

mesh.
Mimicking the study conducted in [11], all six of the

matrices from the University of Florida sparse matrix col-
lection were reordered using the Reverse Cuthill-McKee
(RCM) ordering in an effort to decrease the bandwidth615

and help to improve convergence. An example of the ef-
fect that this can have is provided by Fig. 1.

All of the matrices considered in this study are sym-
metric positive-definite (SPD) and as such the symmet-
ric version of the FGPILU algorithm (i.e. the incomplete620

Cholesky factorization) was used. Also, recall from Sec-
tion 3 that each of the eight matrices used in this study
will be symmetrically scaled to have a unit diagonal in
order to help improve the performance of the FGPILU al-
gorithm. A summary of all of the matrices that were tested625

is provided in Table 2.
The experiments are divided into two sets. This first

set of experiments focuses on the convergence of the FG-
PILU algorithm despite the occurrence of faults and fea-
tures comparisons of the L and U factors produced by the630

preconditioning algorithms. The second set of experiments
shows the impact of using in a Krylov subspace solver the
preconditioners obtained from the first set of experiments.
Note that in all of the experiments conducted, the con-
dition ujj = 0 was never encountered. Since all the test635

matrices are SPD, the preconditioning algorithms are In-
complete Cholesky variants, and the the solver is the pre-
conditioned conjugate gradient (PCG), as implemented in
the MAGMA library [21].

Finally, note that the implementation of the variants640

that was examined in this paper is not optimal from a per-
formance point of view. The goal of the experiments was
to quantify the ability of each of the variants proposed
to provide a measure of resilience to the FGPILU algo-
rithm when it is forced to run through undetected (by the645

system) soft faults. Optimal checkpointing libraries for
GPU based applications have been explored in [23] and
[24], and extended performance analysis would be needed
to produce performance-oriented prototypes of each of the
variants.650
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Matrix Name Abbreviation Dimension Non-zeros Description
APACHE2 APA 715,176 4,817,870 SPD 3D finite difference

ECOLOGY2 ECO 999,999 4,995,991 circuit theory applied to animal/gene flow
G3 CIRCUIT G3 1,585,478 7,660,826 circuit simulation problem
OFFSHORE OFF 259,789 4,242,673 3D FEM, transient electric field diffusion

PARABOLIC FEM PAR 525,825 3,674,625 parabolic FEM, diffusion-convection reaction
THERMAL2 THE 1,228,045 8,580,313 unstructured FEM, steady state thermal problem
LAPLACE2D L2D 250,000 1,248,000 Laplacian 2D finite difference, 5-point stencil
LAPLACE3D L3D 125,000 3,329,698 Laplacian 3D finite difference, 27-point stencil

Table 2: Summary of the 8 symmetric positive-definite matrices used in this study. Descriptions come from [22].

Figure 1: The sparsity pattern for the ‘OFFSHORE’ matrix with
the natural ordering (left), and the RCM ordering (right)

5.1. Fault Model

Soft faults typically manifest as bit-flips. In this study,
two different fault injection methodologies were used. It is
important when looking forward towards producing fault
tolerant algorithms for future computing platforms not to655

become too dependent on the precise mechanism that is
used to model the instantiation of a fault. Much of the
current research (e.g., [25]) treats faults exclusively as bit

flips; which reflects the current method in which faults
occur. Regardless of how a fault manifests in future hard-660

ware, the result of a fault will be a corruption of the data
that is used by the algorithm. To this end, a generalized
numerical scheme for simulating the occurrence of a fault
is adopted in addition to injecting bit flips directly.

Using the perturbation-based model used in [2], the665

modified model targets a single data structure and injects
a small random perturbation into each component tran-
siently, as opposed to doing so persistently as was done
in [12]. For example, if the targeted data structure is a
vector x and the maximum size of the perturbation-based670

fault is ε, then proceed as follows:

• Generate a random number ri ∈ (−ε, ε) for every
component xi, where i ranges over entire length of x

• Set x̂i = xi + ri for all i’s

The resultant vector x̂ is, thus, perturbed away from the675

original vector x. After a fault occurs, it is possible for an
algorithm to detect the error caused by the perturbation
and correct it.

In addition to the numerical scheme discussed above,
additional runs were conducted where a bit was flipped680

directly in the data structure in question. The advantages
of combining these two distinct methods are:

• The perturbation-based model shows resilience of the
proposed algorithmic variants to small-moderate er-
rors and any numerical instability685

• The bit-flip mode shows how robust the algorithms
are with respect to potentially large changes (e.g.
flips in sign or large exponent bits [26])

• The perturbation-based model injects a fault into
all of components of the FGPILU update, whereas690

the bit-flip model only corrupts a single entry. This
duality stresses two opposing features of the fine-
grained nature of the algorithm

To be precise, for the perturbation-based model, if the
vector to be perturbed is x and the size of the perturbation695

based fault is ε than to inject a fault, then generate a
random number in the range rε ∈ (−ε, ε) and set xi =
xi + rε for all i. The resultant vector, x̂, is thus perturbed
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away from the original vector x. Note that the sign of xi
is not taken into account, and therefore, ||x||2 ≈ ||x̂||2.700

It was shown in [13] that the numerical soft-fault model
proposed there corresponds to a “sufficiently bad” impact
of a soft fault rather than attempting to determine the
“damage” exactly of a soft fault. Explorations of the sim-
ilarities and differences between the numerical soft fault705

model presented in [13] and the perturbation based model
are presented in [14, 15]. Simulating these numerical soft
fault models for iterative algorithms may force them to run
consistently through bad errors only; however the bit-flip
model was added to ensure that the “worst case” scenario710

was also captured fully. Furthermore, by varying the size
of the perturbation, it is possible to produce errors with
an increasingly large impact.

In this study, faults are injected into the FGPILU al-
gorithm following the combined methodology described
above. Due to the relatively short execution time of the
FGPILU algorithm on the given test problems, a fault is
induced only once during each run, at a random sweep
number before convergence. Three fault-size ranges (cor-
responding to differing orders of magnitude) for the faults
injected by the perturbation-based model were considered:

ri ∈ (−0.01, 0.01) (13)

ri ∈ (−1, 1) (14)

ri ∈ (−100, 100) (15)

The bit-flip model was included to appropriately gage the
worst case scenario, but no effort was made to force the715

bit selected to be in a particular position. Results for
both the perturbation-based model and the bit-flip model
are presented separately, but as averages over all trials run
for each methodology.

Note: The working assumption in this study is that720

faults only effect the values of the entries lij and uij. If
faults are also allowed to affect the indices used in the
sparse storage scheme, then it is possible that the strictly
lower triangular structure of the Jacobian could be altered
which would have a large impact on the convergence of the725

FGPILU algorithm.

5.2. Convergence of FGPILU algorithm

For the purposes of this study, the FGPILU algorithm
is said to have converged successfully if the non-linear
residual norm progresses below 10−8. Although this thresh-730

old is unnecessarily small from a practical point of view—it
is possible to achieve good performance from a precondi-
tioner with a larger non-linear residual norm—it was cho-
sen so that more sweeps would have to be conducted be-
fore the algorithm converges to better judge the impact of735

faults. The progression of the non-linear residual norm for
a single fault-free run of each problem is depicted in Fig. 2
(top), which is a as an example of the typical progression
of the non-linear residual norm as the algorithm progresses
towards convergence.740

Figure 2: The progression of the non-linear residual for 30
sweeps of a typical fault-free run for each of the 8 test problems
(top). The progression of the non-linear residual for the Apache
test problem for three different fault injection times and fault
size in the (−1, 1) range (bottom). The horizontal dashed line
is indicated the FGPILU convergence tolerance of 10−8.

To illustrate the potential impact of a fault, Fig. 2 (bot-
tom) shows the impact a fault can have on the FGPILU al-
gorithm when it is injected (and ignored) at the beginning,
the middle, or near the end of how long it would take the
algorithm to converge with no faults present. Note that745

the Apache test problem converges to the desired level
of non-linear residual in 20 iterations when faults are not
present.

From Fig. 3 (bottom), it may be observed that it took
about twice as many sweeps for FGPILU to converge un-750

der a single occurrence of a fault; and the number of these
extra sweeps is similar for the three injection places. Al-
though the example shown in Fig. 3 (bottom) is typical
of what what was observed experimentally with the test
cases selected, it is by no means general or conclusive:755

Faults may cause the FGPILU algorithm to diverge en-
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tirely or the resulting L and U factors may cause the PCG
solver to either stagnate or even diverge. A major point
of the example in Fig. 3 (bottom) is to report the bene-
ficial effects on FGPILU convergence of larger number of760

sweeps if faults are ignored in FGPILU and to show the
non-monotonous decrease of the FGPILU residual norm
after a fault takes place.

Aggregate results for the performance of several vari-
ants of FGPILU algorithm are provided in Fig. 3 as follows:765

• when no attempt is made to mitigate the impact of
the faults (No FT),

• the CPA-FGPILU variant wherein the L and U fac-
tors may be replaced in their entirety and is de-
scribed in Algorithm 3 (CPA),770

• the CP-FGPILU which rolls back a single row and
column of the L and U factors and is described in
Algorithm 4 (CP),

• the periodic correction step based on checking component-
wise progression of the elements in the L and U fac-775

tors and is given in Algorithm 5 (SS),

• the periodic correction step based on checking component-
wise progression of the individual non-linear residu-
als, τij which is given in Algorithm 6 (CW).

5.2.1. Perturbation-Based Faults780

This section examines the effects of a soft fault (mod-
eled as a perturbation as described in Section 5.1) on the
FGPILU algorithm and the variants discussed throughout
the paper. The convergence of the FGPILU algorithm it-
self - as judged by the number of sweeps until the desired785

tolerance is met and the percent of trials that resulted in
preconditioning factors that led to a successful solve of the
associated linear system - is given in Fig. 3.

Figure 3 (top) shows the average number of sweeps to
reach convergence for the cases that were successful. Note790

that this number is generally lower for the checkpoint-
based schemes, but that this is not the case for all of
the problems that were tested. However, the higher suc-
cess rate of the CPA-FGPILU and CP-FGPILU algorithms
combined with the generally faster convergence of those795

methods suggests that, with the parameters used in this
study, they are more effective at mitigating faults. The
small degradation in the number of sweeps to convergence
depicted in Fig. 3 (top) for certain problems (i.e., L3D) for
the No FT variant reflects the fact that only successful runs800

are included in the averages here. In Fig. 3 (bottom), a cor-
responding drop in the “success rate” can be seen for the
problems where the increase in the number of sweeps re-
quired is not as large as expected for variants without fault
mitigation. Here, a preconditioner is deemed as resulting805

in success if the PCG solve using it terminates before the
maximum number of iterations is reached. For the FG-
PILU variants tested, the success rates captured in Fig. 3

Figure 3: For perturbation-based faults: the numbers sweeps re-
quired for convergence for each of the 8 test problems (top). The
percentage of runs that produced a preconditioner that corresponded
to a successful PCG solve (bottom).

(bottom) show that both of the checkpoint-based variants
are usually more successful than the self-stabilizing one at810

mitigating faults modeled as perturbations and producing
acceptable preconditioners.

It is important to note that a large, unoptimized value
of β = 4 was used for the percent difference check inside of
the SS runs, and that this value may certainly be improved815

and tuned for the particular case at hand. The lower suc-
cess rates associated with the SS-FGPILU algorithm are
due to the fact that some of the smaller faults are not
caught by this large value of β and the Jacobian moves
to a portion of the domain where the mapping is not a820

contraction. Finding a way to obtain optimal parameters
for the FGPILU algorithm variant utilizing the periodic
correction step featured in Algorithm 5 efficiently from in-
trinsic properties of the linear system in question is left
as future work. It is possible that the method presented825

by this algorithm could be tuned to the specific problem
at hand in a manner that efficiently made the FGPILU
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algorithm resilient to soft faults.

5.2.2. Bit-Flip Faults

This section provides results concerning the conver-830

gence of the FGPILU algorithm (and the variants pre-
sented in this work) when subjected to faults directly cor-
responding to a bit-flip. The range of impacts possibly
induced by a bit flip fault is wider than those caused by
the perturbation-based fault model that was used above in835

Section 5.2.1. This gives the possibility of creating a fault
that drastically impedes the ability of the FGPILU algo-
rithm to converge as well as making it possible for a fault
to have an almost negligible impact; detectable by only
the strictest of fault detection mechanisms. As before, the840

results are averaged over multiple trials and aggregate re-
sults are presented.

Figure 4: For bit-flip faults: the numbers sweeps required for conver-
gence for each of the 8 test problems (top). The percentage of runs
that produced a preconditioner that corresponded to a successful
PCG solve (bottom).

Figure 4 (top) shows the number of sweeps until con-
vergence for each of the FGPILU algorithm variants when
subjected to a single bit-flip fault. The number of sweeps845

in this case (i.e. with a bit flip instead of a perturbation)
is fairly consistent across the methods tested, especially
when compared with Fig. 3. The success rates for the tri-
als run with bit flips (see Fig. 4 (bottom)) are significantly
higher relative to the success rates when the algorithm850

variants were subject to perturbation-based faults. This
owes to the fact that only a single component is affected
by the faults injected using a bit-flip based methodology.

Generally speaking, the higher variance with the amount
of data corruption associated with a random bit flip causes855

the trials using a bit-flip fault methodology to have very
little or catastrophic impact. This is seen when comparing
Fig. 3 and Fig. 4 in that in the number of sweeps taken
until convergence on the successful runs (i.e. the top im-
ages of each figure) the number of sweeps until convergence860

is generally lower for faults modeled as bit flips and that
the variance in performance (as judged by the number of
sweeps until convergence) between the different variants of
the FGPILU algorithm is lower.

5.3. Preconditioner Performance in Iterative Methods865

In this set of experiments, a maximum number of 3000
PCG iterations was used; any run that had not converged
by that point was declared to have diverged. While all of
the preconditioners to be evaluated are forms of incomplete
LU decomposition, they are constructed by algorithms de-870

scribed in Section 5.2. For the purpose of an extended
comparison, results are provided for the traditional Incom-
plete Cholesky (IC) and the Fine Grained Parallel Incom-
plete Cholesky (ParIC); neither of these two variants is
subjected to faults.875

5.3.1. Perturbation-Based Faults

Figure 5 captures only the cases in which a precon-
ditioner was successfully prepared (c.f. Fig. 3 (bottom)).
Figure 5 (top) indicates that a successful FGPILU variant
is typically capable of accelerating the PCG solve to the880

levels similar to those achieved by the no-fault construc-
tions of a more traditional incomplete LU factorization.
The few anomalous bars from Fig. 5 (top) correspond to
runs of the FGPILU algorithm where no fault tolerance
was attempted (NoFT) and enough of these runs were able885

to produce a PCG solve that converged in far more iter-
ations than would typically be required to skew the av-
erages. This seems to suggest that this behavior is not
entirely anomalous and that the FGPILU algorithm has
some nature level of resilience (else, the solves would not890

have been “successful” in the first place) to soft faults.
The timing results presented in Fig. 5 (bottom) are for

the total time required for the preconditioner preparation
and PCG solve. While the former may vary much depend-
ing on which variant is considered, the latter is rather uni-895

form across the variants due to their similar numbers of
iterations performed to convergence. More efficient imple-
mentations of the fault tolerance mechanisms and a more
realistic tolerance for the non-linear residual norm may
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Figure 5: For perturbation-based faults: the numbers of iterations
required for the successful PCG solves for each of the 8 test problems
(top). The time required for the successful PCG solves for each of
the 8 test problems (bottom).

improve the performance of the three fault-tolerant vari-900

ants of the FGPILU algorithm, however the initial results
show that the periodic correction step proposed in Algo-
rithm 6 and represented by CW may be one of the more ef-
ficient variants. Note that because of the excessively small
convergence chosen to declare the FGPILU algorithm con-905

verged (i.e. 10−8) the time for all of the FGPILU variants
(including ParIC) are inflated relative to the performance
of traditional incomplete factorization (IC).

5.3.2. Bit-Flip Faults

Again, the differing impacts caused by a fault modeled910

as a bit-flip - as opposed to the perturbation-based data
corruption that corresponds to the other fault injection
methodology described in Section 5.1 - are explored at the
level of timing and accuracy results in the corresponding
PCG solve.915

Figure 6 (top) shows that the number of sweeps re-
quired for the PCG solver to convergence is even across

Figure 6: For bit-flip faults: the numbers of iterations required for
the successful PCG solves for each of the 8 test problems (top). The
time required for the successful PCG solves for each of the 8 test
problems (bottom).

all FGPILU algorithm variants. This shows that when
the corresponding FGPILU algorithm variant successfully
produces preconditioning factors the effect that the fac-920

tors have on the PCG solver is similar. The fact that no
runs without fault tolerance (NoFT) were able to converge
in a large number of iterations similar to Fig. 5 (top) is
also indicative of the dichotomy of possible effects caused
by a bit-flip; either the effect is fairly negligible and the925

preconditioning factors that are produced accelerate the
PCG solve as expected, or the effect is large enough that
incomplete factorization does not lead to a successful solve
of the associated linear system.

Conversely, Fig. 6 (bottom) shows that the time re-930

quired for both preconditioner preparation and the PCG
solve vary more from on method to another. There is more
overhead associated for the two checkpointing schemes than
the other variants and this could be (at least partially)
mitigated by optimizing the number of times the required935

checkpoint data is stored to limit the data transfer and
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read/write overhead, or improving the implementation that
is used for checkpointing. This is seen as well in Fig. 5
(bottom) but the discrepancy between the checkpointing
based variants (CP and CPA) and the other variants is not as940

great. In the case of the periodic correction step variants
(SS and CW) the overhead is possibly due to the extra work
required on the component level since the perturbation-
based faults tend to corrupt all of the components in the
preconditioning factors L and U whereas in the bit-flip945

fault only a single component is corrupted. In general, the
CW variant seems to exhibit the least amount of overhead
from a time oriented perspective.

6. Conclusions

This paper has examined the potential impact of soft950

faults on the FGPILU algorithm. These faults, undetected
by the unmodified program, have the potential to cause
severe disruption to the preconditioning routine as well
as the solver that uses the incomplete factors generated
by the preconditioning algorithm. The ability of the FG-955

PILU algorithm to tolerate and mitigate certain soft faults
arising in the construction of L and U factors has been ex-
plored using several algorithm variants and two distinct
ways of modeling the impact of a soft fault.

The experiments conducted here have shown that the960

FGPILU algorithm is somewhat naturally resilient to smaller
faults as modeled here – i.e. either perturbations or bit-
flips that affect less significant bits in the mantissa – but
that larger faults can cause the algorithm to diverge and
produce L and U factors that (if used) prohibit the corre-965

sponding Krylov subspace method from solving the orig-
inal linear system Ax = b successfully. Comparing the
bottom images of Fig. 3 and Fig. 4 indicates that the
FGPILU algorithm and the variants discussed here tend
to be more resilient to errors that only corrupt a single970

component. The results given here indicate that any un-
detected soft fault that affects multiple components will
be significantly more compromising for the FGPILU algo-
rithm. The variants of the FGPILU algorithm discussed
in this paper have provided mechanizations that supply a975

measure of resilience to the procedure and allow it to con-
verge successfully. Additionally, the techniques discussed
offer an abundance of methods that can be used to cre-
ate further variants that may provide better performance
and/or resilience for specific problem domains.980

In the future, it would be beneficial to create more
streamlined performance prototypes of each of the variants
in order to get a more accurate gage of the relative perfor-
mance between them. Additionally, it would be advanta-
geous to explore the convergence of the FGPILU algorithm985

(both subject to faults, and in a fault-free environment)
in more diverse problem domains. The vast majority of
the problems that have been studied in the majority of
the work (i.e. [7, 11, 2]) on the FGPILU algorithm have
all explored problems that tend to be similar in nature.990

In particular, exploring the convergence of the algorithm

for highly non-symmetric or indefinite matrices could help
provide means for improving the convergence of the algo-
rithm in a more general, global setting.

While it has been shown in previous works [7, 11] that995

it is possible to generate a suitable ILU preconditioner us-
ing a small number of sweeps of the FGPILU algorithm,
the use of fine-grained preconditioning algorithms is in-
creasing in general, and as new fine-grained precondition-
ing algorithms are developed, some may use the FGPILU1000

algorithm as a building block and require the FGPILU
algorithm to execute successfully inside of a more com-
plex preconditioning scheme. In these cases, it may be
important to have the FGPILU algorithm converge more
completely, and the work presented here could be used as1005

a starting point towards ensuring that can happen success-
fully even when computing faults happen to occur.
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