
Using Modeling to Improve the Performance of Asynchronous
Jacobi

Erik J. Jensen1, Evan Coleman1,2, and Masha Sosonkina1
1Modeling, Simulation and Visualization Engineering, Old Dominion University, Norfolk, VA, USA

2Naval Surface Warfare Center, Dahlgren Division, Dahlgren, VA, USA

Abstract— Asynchronous algorithms may increase perfor-
mance of parallel applications. This work investigates strate-
gies for implementing asynchronous hybrid parallel MPI-
OpenMP Jacobi solvers, and generates a predictive per-
formance model that suggests solver parameters that are
well-suited to a specific problem. Results show that making
efforts to equalize the number of iterations for all processing
elements benefits performance and solution quality.

Keywords: Jacobi method, Asynchronous implementation, Fixed-
point iteration, parallel hybrid MPI OpenMP, Laplace equation

1. Introduction
Asynchronous parallel methods avoid the performance

cost of synchronizing MPI processes and OpenMP threads
that are working together to complete a calculation. Instead
of waiting for the slowest processing component to complete
a computation to proceed to the next step or iteration, the
other processing components may independently continue to
compute. Asynchronous systems have some advantages over
synchronous systems, in that they may mitigate the effect of
typical performance variations between similar computing
elements, for example, from iteration to iteration; or they
may harness the ability of a computing element to perform
useful work while waiting for information from another
computing element.

As future high-performance computing (HPC) platforms
continue to scale in the number of processing elements
and calculations are increasingly parallelized, asynchronous
methods may offer performance superior to synchronous
methods. Several U.S. Department of Energy reports [2],
[3], [15] have cited the need for the development of asyn-
chronous computational methods to run efficiently on future
exascale HPC environments.

Bethune, et al. present several asynchronous Jacobi
method implementations that solve the Laplace equation
in three dimensions, which are parallelized with MPI,
SHMEM, or OpenMP [8], [9]. Their finding that asyn-
chronous Jacobi implemented with OpenMP is 33% faster
than the synchronous OpenMP application leads them to
suggest the potential for OpenMP in a hybrid MPI–OpenMP
implementation. This work implements some asynchronous
hybrid MPI–OpenMP models that solve a two-dimensional

finite-difference discretization of the Laplacian using Ja-
cobi’s method, similar to the work of Bethune, et al. Related
work and the Laplacian equation are outlined in Sections 2
and 3, respectively. The parallel solver models and im-
plementations are described in Section 5. Implementation
testing results are examined in Section 6. The predictive
model is explained in section Section 7, model results
are discussed in Section 7.1, and Section 8 concludes and
projects future work.

2. Related Work
Bahi et al. demonstrate the efficacy of asynchronous

methods, especially for grid systems, and propose a sys-
tem for classifying parallel iterative algorithms, based on
computational and communication strategies [6], [5]. Iter-
ations and communications may be either synchronous or
asynchronous. This work develops and tests implementations
that are Asynchronous Iterations - Asynchronous Commu-
nications (AIAC), Synchronous Iterations - Synchronous
Communications (SISC), and also an unmentioned class,
Asynchronous Iterations - Synchronous Communications
(AISC). Jager and Bradley also demonstrate superior per-
formance of asynchronous methods for solving large sparse
linear fixed-point problems [14]. Voronin compares three
parallel implementations using MPI and OpenMP, with asyn-
chronous threads, and finds that utilizing a “postman” thread
within each computational node to perform communications
delivers superior performance, compared to the alternative
hybrid MPI-OpenMP implementation [28]. Examples of
work examining the performance of asynchronous iterative
methods include an in-depth analysis from the perspective
of utilizing a system with a co-processor [1], [4], as well as
performance analysis of asynchronous methods [8], [19], [9].
In particular, both [8], [9] focus on low level analysis of the
asynchronous Jacobi method, similar to the example problem
presented here. Work exploring possibilities for reducing the
communication costs in a distributed asynchronous solver
has also been performed [29]. While many recent research
results for asynchronous iterative methods are focused on
implementations that utilize a shared memory architecture,
one area of asynchronous iterative methods that has seen
significant development using a distributed memory archi-
tecture is optimization [13], [20], [18], [30], [24], [27], [10]

3. Problem Description
In science and engineering, partial differential equations

mathematically model systems in which continuous vari-
ables, such as temperature or pressure, change with respect
to two or more independent variables, such as time, length,
or angle [23]. The Laplace equation in two dimensions,

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= b, (1)

is fundamental for modeling equilibrium and steady state
problems, such as incompressible fluid flow or heat transfer,
and maintains that the rate at which a fluid enters a domain
is equal to the rate at which a fluid leaves the domain. In
practice, the partial differential equation is not used directly,
but is discretized such that a finite difference operator
computes difference quotients over a discretized domain. For
example, the two-dimensional discrete Laplace operator,(
∇2f

)
(x, y) = f(x− 1, y) + f(x+ 1, y) + f(x, y − 1)

+ f(x, y + 1)− 4f(x, y), (2)

approximates the two-dimensional continuous Laplacian us-
ing a five-point stencil [22]. From this, a discretized version
of the Jacobi algorithm,

vk+1
l,m =

1

4
(vkl+1,m + vkl−1,m + vkl,m+1 + vkl,m−1, (3)

may be applied to solve a two-dimensional sparse linear sys-
tem of equations [25]. Subscript indices l,m and superscript
index k define discrete grid nodes and iteration number,
such that vk+1

l,m is the solution at node l,m at the (k + 1)th

iteration. This work uses the Jacobi algorithm to solve a two-
dimensional finite-difference discretization of the Laplacian
with Dirichlet boundary conditions, which may be viewed
as a heat diffusion problem with a plate held to specific
temperatures along the boundary [11].

4. Asynchronous Iterative Methods
In parallel computing, when performing the computation

asynchronously, each component of the problem, e.g., a
matrix or vector (block) entry, is updated in a manner that
does not require information from the computations involv-
ing other components while the update is being made. This
allows for each computing element (e.g. a single processor,
CUDA core, or Xeon Phi core) to act independently from
all other computing elements.

A theoretical basis for asynchronous computation has been
explored in [16], which in turn comes from [12], [7] and [26]
(among many others). To keep the model of asynchronous
computation as general as possible, consider a function, G :
D → D where D is a domain that represents a product
space D = D1×D2×· · ·×Dm. The goal is to find a fixed
point of the function G inside of the domain D. To this end,
a fixed point iteration is performed such that,

xk+1 = G(xk), (4)

and a fixed point is declared if xk+1 ≈ xk.
The assumption is made that there is some finite number

of processing elements P1, P2, . . . , Pp each of which is
assigned to a block B of components B1, B2, . . . , Bm to
update. Note that the number p of processing elements will
typically be significantly smaller than the number m of
blocks to update. With these assumptions, the computational
model can be stated in Algorithm 1.

Algorithm 1: General Computational Model

1 for each processing element Pl do
2 for i = 1, 2, . . . until convergence do
3 Read x from common memory
4 Compute xi+1

j = Gj(x) for all j ∈ Bl
5 Update xj in common memory with xi+1

j for
all j ∈ Bl

This computational model has each processing element
read all pertinent data from global memory that is accessible
by each of the processors, update the pieces of data specific
to the component functions that it has been assigned, and
update those components in the global memory. Note that
the computational model presented in Algorithm 1 allows
for either synchronous or asynchronous computation; it only
prescribes that an update has to be made as an “atomic”
operation (in line 5), i.e., without interleaving of its result. If
each processing element Pl is to wait for the other processors
to finish each update, then the model describes a parallel
synchronous form of computation. On the other hand, if
no order is established for Pls, then an asynchronous form
of computation arises. Furthermore, set a global iteration
counter k that increases every time any processor reads
x from common memory. At the end of the work done
by any individual processor p the components associated
with the block Bp will be updated. This results in a vector
x = (x

s1(k)
1 , x

s2(k)
2 , . . . , x

sm(k)
m), where the function sl(k)

indicates how many times an specific component has been
updated. Finally, a set of individual components can be
grouped into a set Ik, which contains all of the components
that were updated on the kth iteration. Given these basic def-
initions, the three following conditions (along with the model
presented in Algorithm 1) provide a working mathematical
framework for fine-grained asynchronous computation.

Definition 1: If the following three conditions hold:
1) si(k) ≤ k − 1, i.e. only components that have finished

computing are used in the current approximationr,
2) limk→∞ si(k) = ∞, i.e. the newest updates for each

component are used,
3) |k ∈ N : i ∈ Ik| =∞, i.e all components will continue

to be updated,
then, given an initial x0 ∈ D, the iterative update process

defined by

xki =

{
xk−1i i /∈ Ik,
Gi(x) i ∈ Ik,

where the function Gi(x) uses the latest updates available,
is called an asynchronous iteration.

This basic computational model (i.e., Algorithm 1 together
with Definition 1) allows for many different implementations
of fine-grained iterative methods that are either synchronous
or asynchronous, although the three conditions in Defini-
tion 1 are unnecessary in the synchronous case.

5. Hybrid Implementations
The implementations solve a two-dimensional finite-

difference discretization of the Laplacian, using OpenMP
for shared memory parallelization, and MPI for distributed-
memory parallelization. Generally, the Laplacian is dis-
cretized over a rectangular region, which is then divided
into a number of evenly distributed regions equal to the
number of MPI processes. These regions are then divided
further to assign a number of rows to an OpenMP thread.
For the np threads in each subdomain, one is assigned
the role of master/communicator1. Several types of imple-
mentations have been developed and used in this study.
These implementations are predominantly asynchronous in
nature, according to the computational model presented in
the previous subsection, but a synchronous implementation
and an exclusively shared-memory-parallel implementation
are included as well as points of comparison. All of the im-
plementations except for the shared-memory implementation
are fundamentally suited for computation on a distributed
computing platform. The implementations that are provided
fall into the following categories: Asynchronous Iterations
with Asynchronous Communication (AIAC), Asynchronous
Iterations with Synchronous Communication (AISC), and
Synchronous Iterations with Synchronous Communication
(SISC). Descriptions of these different classifications follow
in the next few subsections. In addition to these implemen-
tations, an exclusively shared-memory-parallel implementa-
tion, SHRD, has been developed as a benchmark, to measure
the effectiveness of the hybrid-parallel implementations.

a) Asynchronous Iterations–Asynchronous Communica-
tions (AIAC): Two matrices U0 and U1 store grid point
values that each thread reads, e.g. from U1, to compute newer
values to write, e.g. to U0. As the method is asynchronous,
each thread independently determines which matrix stores its
newer u(t+1)(i, j) values and older u(t)(i, j) values. For an
n+2 by n+2 subdomain grid that is equally divided among
all np threads, each thread solves for n2/np grid points, such
that the grid is evenly partitioned along the y-axis. When a

1In this paper, master thread and communicating thread are equivalent
and used interchangeably.

thread copies grid point values above or below its domain for
the computation, OpenMP locks are employed to ensure that
data is captured accurately, from a single iteration. Further,
locks are used when updating values on boundary rows and
subdomain halos, and when copying subdomain boundaries.
The swap period Pswap= k, k = 1, 2, . . . , N denotes that
halo values are exchanged every kth iteration only. Each
thread pn computes the its local residual 2-norm squared2

every kth iteration, which it contributes to the subdomain
residual. Using an OpenMP atomic operation, a single thread
computes the subdomain residual-norm value, as a sum of
thread-local residual norms, and sends it to the master MPI
process.

Within the AIAC category, there are five variants:
1) Work-Scaling-1 (WS1): The subdomain is equally di-

vided among all OpenMP threads, and thread zero, p0,
performs communication with the master MPI process.
In addition to the halo swap, p0 computes the residual
norm for the subdomain and updates the master with
this value.

2) Work-Scaling-X (WSX): The subdomain is divided,
such that the communicating thread p0 performs less
computational work—specifed by the fraction 0 < X <
1—than the other threads. The size of the p0 compute
region is n/np×X rows, and the other threads equally
divide the remainder of the subdomain. As in WS1,
thread p0 computes and updates the subdomain residual
norm.

3) Rotating-Incrementing (RTINC): The subdomain is
equally divided among all the OpenMP threads, but
communication with the master MPI process is rotated
in a round-robin fashion among the threads. Communi-
cation passes to the next thread after one halo swap
operation. The communicating thread also computes
and updates the subdomain residual norm.

4) Rotating-Maximum-Iterations (RTMAXIT) is similar to
RTINC, but chooses the OpenMP thread that has per-
formed the most iterations for the next communication
and update operations.

5) Rotating-Minimum-Residual (RTMNRS) is similar to
RTMAXIT, but chooses the OpenMP thread that has
the smallest contribution to the residual norm for the
next communication and update operations.

b) Asynchronous Iterations–Synchronous Communica-
tions (AISC): The AISC implementation Asynchronous-
Direct (ASNCDIR) is similar to the AIAC implementations,
but one OpenMP thread in each MPI process is reserved
exclusively for synchronous communication with other sub-
domains. In ASNCDIR, the communicating threads swap
subdomain halo values directly, without the master MPI pro-

2In the remainder of the paper, norm will be used instead of 2-norm
squared for brevity.

0 5 10 15

Swap Period

0.6

0.65

0.7

0.75

0.8

0.85

0.9

T
im

e
(s

)

RtInc
RtMxIt

RtMnRs
WS-1

WS-1/5
AsncDir

Implementation

(a) Async. implementations, N=200

0 5 10 15

Swap Period

2.6

2.8

3

3.2

3.4

3.6

3.8

4

T
im

e
(s

)

RtInc
RtMxIt

RtMnRs
WS-1

WS-1/5
AsncDir

Implementation

(b) Async. implementations, N=400

0 5 10 15

Swap Period

20

40

60

80

100

120

140

T
im

e
(s

)

RtInc
RtMxIt

RtMnRs
WS-1

WS-1/5
AsncDir

Implementation

(c) Async. implementations, N=800

0 5 10 15

Swap Period

0

0.5

1

1.5

2

2.5

T
im

e
(s

)

RtInc
RtMxIt
RtMnRs
WS-1
WS-1/5
AsncDir
SncDir
Shrd

Implementation

(d) All implementations, N=200

0 5 10 15

Swap Period

2

4

6

8

10

12
T

im
e

(s
)

RtInc
RtMxIt
RtMnRs
WS-1
WS-1/5
AsncDir
SncDir
Shrd

Implementation

(e) All implementations, N=400

0 5 10 15

Swap Period

20

40

60

80

100

120

140

T
im

e
(s

)

RtInc
RtMxIt
RtMnRs
WS-1
WS-1/5
AsncDir
SncDir
Shrd

Implementation

(f) All implementations, N=800

Fig. 1: Convergence of hybrid-parallel and shared-memory implementations with respect to swap period Pswap, for three
subdomain sizes.

cess intermediary. The compute threads still require OpenMP
locks for copying and updating shared variables values, and
the communication thread also retains locks for copying the
subdomain boundary and updating the subdomain halo.

c) Synchronous Iterations–Synchronous Communica-
tions (SISC): The SISC implementation Synchronous-
Direct (SNCDIR) is a modification of an AIAC implemen-
tation, in which iterations and communications have been
synchronized across threads and subdomains. For SNCDIR,
while one subdomain thread communicates directly with
other subdomains, all the non-communicating threads are
idle in that subdomain. OpenMP locks are unnecessary and
removed.

6. Performance Results
Experiments were conducted on the Turing High Per-

formance Computing cluster at Old Dominion University,
which contains 190 standard compute nodes, 10 GPU nodes,
10 Intel Xeon Phi Knight’s Corner nodes, and 4 high
memory nodes, connected with a Fourteen Data Rate (FDR)
InfiniBand network. Compute nodes contain between 16 and
32 cores and 128 Gb of RAM. Data were collected on nodes
with two different hardware configurations, each with two
sockets, consisting of either

1) 10 Intel Xeon E5-2670 v2 2.50Ghz cores, or
2) 10 Intel Xeon E5-2660 v2 2.20Ghz cores.

Data collected from empirical testing of the implementations
demonstrates the efficacy of different solving strategies, as a
function of problem size, subdomain size, and swap period
Pswap, which ranges from 1 to 16. Figure 1 presents time
to convergence as a function of swap period for all imple-
mentations that were developed and tested for this work.
Error tolerance for all tests is 1e−4. Grids were divided into
four subdomains, with two divisions along the midpoints of
each axis. Figure 1(a), (b), and (c) depict data only for asyn-
chronous hybrid-parallel implementions, while Fig. 1(d), (e),
and (f) also includes data for the synchronous hybrid-parallel
and shared-memory implementations SNCDIR and SHRD.
ASNCDIR, SNCDIR, and SHRD are included as dashed
reference lines because they lack swap-period functionality.
Figure 1(a) and (d) show that for domain size N = 200,
the shared-memory implementation outperforms the hybrid-
parallel implementations; the added complexity of hybrid
parallelization cannot be justified for such a small domain.
However, using larger subdomain sizes demonstrates that
the hybrid implementations benefit from the additional com-
plexity of distributed parallelization. Figure 1(b) and (e)
show that for domain size N = 400, the asynchronous
hybrid-parallel implementations outperform SHRD, in terms

10 20 30 40 50
Number of MPI Processes

0

20

40

60

80

100

120

140

160

180

T
im

e
(s

)

RtInc
RtMxIt
RtMnRs
WS-1

WS-1/5
SncDir
AsncDir

Implementation

(a) Convergence, weak scaling, Pswap=1

10 20 30 40 50
Number of MPI Processes

0

10

20

30

40

50

60

T
im

e
(s

)

RtInc
RtMxIt
RtMnRs
WS-1

WS-1/5
SncDir
AsncDir

Implementation

(b) Convergence, weak scaling, Pswap=16

10 20 30 40 50
Number of MPI Processes

0

2

4

6

8

10

12

It
er

at
io

n
s

P
er

 S
ec

o
n

d

104

RtInc
RtMxIt
RtMnRs
WS-1
WS-1/5
SncDir
AsncDir

Implementation

(c) Iteration rate, Pswap=1

10 20 30 40 50
Number of MPI Processes

5

6

7

8

9

10

11

12

13

It
er

at
io

n
s

P
er

 S
ec

o
n

d

104

RtInc
RtMxIt
RtMnRs
WS-1
WS-1/5
SncDir
AsncDir

Implementation

(d) Iteration rate, Pswap=16

Fig. 2: Weak scaling and iteration rates for swap periods 1 and 16. Individual weak-scaling trajectories may be interpreted
only relative to other implementations.

of calculation time. In Fig. 1(c) and (f), for domain size N =
400, the gap between the asynchronous implementations and
SHRD widens substantially. As shown in Fig. 1(e) and (f),
the asynchronous implementations run more quickly than the
synchronous hybrid-parallel implementation SNCDIR, which
loses opportunity to compute on non-communicating threads
during the communication phase. When Pswap is sufficiently
large, the five different implementations that are of type
AIAC perform similarly, with minor variations. For these
tested problem sizes, the AISC implementation ASNCDIR
falls short of the other asynchronous implementations, pos-
sibly because the advantage of quick communication and
constant halo swaps does not outweigh the loss of a com-
putational thread. However, the arc in the ASNCDIR weak-

scaling trajectory in Figure 2(b) suggests ASNCDIR may
perform better than AIAC implementations at a larger scale.

Figure 2 shows the scaling abilities of the implementa-
tions, for subdomain size n = 200. Figure 2(c) and (d) show
that iteration rates (i.e., iterations per second) remain fairly
constant as a function of problem size, meaning that a signif-
icant communication bottleneck is not observed. Increasing
the swap period improves the iteration rate, especially for
SNCDIR, which suffers from a costly communication phase
and fails to match the iteration rates of the asynchronous
implementations.

Figures 3 and 4 demonstrate the shortcomings of the
work-scaling implementation WS, for subdomain size n =
200 and 4 subdomains. While WS is the easiest AIAC

WS-1 WS-1/2 WS-1/3 WS-1/4 WS-1/5
Work-Scaling Factor

0

2

4

6

8

10

12

It
er

at
io

n
s

P
er

 S
ec

o
n

d

104

0 1-9

OpenMP Threads

(a) Pswap=1

WS-1 WS-1/2 WS-1/3 WS-1/4 WS-1/5
Work-Scaling Factor

0

0.5

1

1.5

2

It
er

at
io

n
s

P
er

 S
ec

o
n

d

105

0 1-9

OpenMP Threads

(b) Pswap=16

Fig. 3: Iteration rates by thread number for swap periods 1 and 16, work-scaling implementation.

WS-1 WS-1/2 WS-1/3 WS-1/4 WS-1/5
Work-Scaling Factor

0

0.5

1

1.5

2

2.5

3

3.5

R
es

id
u

al
 (

N
o

rm
 S

q
u

ar
ed

)

10-9

0 1-9

OpenMP Threads

(a) Pswap=1

WS-1 WS-1/2 WS-1/3 WS-1/4 WS-1/5
Work-Scaling Factor

0

1

2

3

4

5

6
R

es
id

u
al

 (
N

o
rm

 S
q

u
ar

ed
)

10-9

0 1-9

OpenMP Threads

(b) Pswap=16

Fig. 4: Final residual norm contribution by thread number for swap periods 1 and 16, work-scaling implementation.

variant to implement, convergence and solution quality may
suffer if care is not taken to balance communication with
computation. As a dedicated thread performs communi-
cations as well as computations, the iteration rate may
be less than that for the non-communicating threads, if
communication and computation phases are imbalanced.
Figure 3 implies balance can be achieved by pairing the
work-scaling factor X with an appropriate swap period,
such that time, and therefore iterations, lost during the
communication phase, may be budgeted with a sufficiently
small compute load.

Equalizing iteration rates of master and non-master
threads also may help mitigate the error imbalance seen

in Fig. 4; error imbalance in this context refers to the
contribution to the residual norm from the elements assigned
to specific threads. Explicitly, the residual at the kth iteration
rk = b − Axk can be examined at the component level to
see the contribution to the total residual norm from each
element. Figure 4(a) shows that when the work is not scaled
appropriately, a relatively large quantity of the residual
norm is contributed from the thread that is responsible for
communication, indicating that it may not be able to iterate
enough to sufficiently minimize the error associated with
the components that it is responsible for updating. In other
words, Fig. 4(a) shows that when a communicating thread
does not match the iteration rate of non-communicating

threads, a disproportionately large amount of the solution
error originates from the communicating thread. However,
Fig. 4(b) suggests that this problem can be mitigated by
increasing the swap period. The predictive model discussed
in Section 7 aims to investigate appropriate swap-period-
work-scaling-factor pairings for a given problem.

7. Predictive Model
The predictive model utilizes the time distributions gen-

erated from empirical data for subdomain size n = 200
(shown in Fig. 5) that correspond to key operations of the
implementations, including the time required for a thread to
(a) copy the left and right halo values of the subdomain,
(b) copy the top and bottom halo values of the subdomain,
(c) copy the interior boundary values from a neighbor,
(d) compute updates for a boundary or interior row,
(e) compute and update an interior row,
(f) update the left and right subdomain boundary values,
(g) update the top and bottom subdomain boundary values,
(h) update interior boundary row values, and
(i) compute its residual norm component.
The communicating OpenMP thread additionally must
(j) update the subdomain residual norm,
(k) copy the subdomain boundary values, and
(l) update the subdomain halo values,
and the MPI master rank
(m) communicates and updates the global error, the sum of

the subdomain residual norms, and
(n) communicates and updates the halo values.
Using MATLAB, the collected empirical data was fit to
several distributions, each of type KERNEL, a nonparametric
distribution function that uses multiple superimposed normal
distribution functions to represent data with a non-normal
probability density. This distribution function works well for
multimodal data.

Model communication data is useful for predicting behav-
ior of a calculation with any number of subdomains of size
n = 200. Model communication times are from the perspec-
tive of the master MPI process and have no knowledge of
communication delay due to queueing. The predictive model
effectively simulates communication delays due to multiple
MPI worker processes attempting to communicate with the
master process.

Similar to the method described in [21], a MATLAB
script models thread computation and master-worker com-
munication for WS. The predictive model does not simulate
or estimate computations, but simulates times to complete
operations in the WS implementation. Similar to the WS
implementation, the model is assigned a number of MPI
processes and a number of OpenMP threads for each pro-
cess; each process has a communicating thread. Unlike the
WS implementation, the simulation runs serially; it uses
loops and logic statements to simulate the parallel behavior

of WS. In the outermost loop, for a given application pa-
rameter configuration, code that models the behavior of the
MPI master process sorts through messages from workers,
works on the chronologically first message, and assigns
the thread associated with the earliest message to the next
appropriate phase in its iteration, e.g. initiating a subdomain
halo swap, or updating subdomain halo values after swap
communication. After the master-side communication has
completed, any worker communicating threads that are not
waiting for a response from the master process begin,
continue, or complete an iteration. After a communicating
thread has completed an iteration, each non-communicating
thread belonging to the same MPI process iterates until
its simulation time is equal to or greater than that of the
communicating thread. The simulation terminates when the
master process clock meets or exceeds the set run time.
Model outputs are simulation times and number of iterations
completed for each thread.

Based on the results and discussion given in Section 5,
it is reasonable to expect the performance of distributed
asynchronous Jacobi to be improved when the iteration
rate of the non-communicating (i.e. non-master) thread is
roughly equal to the iteration rate of the communicating
thread inside each subdomain. Due to the extra time required
for the communicating thread to update the master process,
it is unlikely that this balance will be achieved when the
communicating thread is responsible for updating as large a
portion of the subdomain as the other threads. In order to
find this point of balance, the simulation of the predictive
model developed here was used.

7.1 Model Results
Figure 6 and Fig. 7 depict reasonable model output,

considering the relationship between work-scaling factor
and swap period. Further, results are comparable to actual
performance on the Old Dominion University Turing clus-
ter, specifically iteration rates seen in Fig. 3. Differences
between Fig. 6 and Fig. 3 may be attributable to different
hardware used for data collection. Therefore the model may
be useful for the selection of good application parameters.
In particular, when trying to find the amount by which to
scale the work given to the communicating thread in each
subdomain, it is useful to look at the ratio of the iteration
rate Im of the communicating thread compared with the
iteration rate Inm of the non-master threads, which is an
average over all the other threads in the subdomain. In the
simulation, the communicating thread computes an area of
the subdomain ranging from 8% to 100% of n/np rows for
the swap period Pswap ranging from 1 to 16. Note that not
all swap periods are able to achieve this optimal balance,
and that the swap periods that achieve this balance have a
corresponding work-scaling factor where its Fig. 8 swap-
period trajectory intersects y = 1.

1 2 3 4 5 6

Time (s) 10-7

0

0.5

1

1.5

2

P
ro

b
ab

ili
ty

 D
en

si
ty

107

data
fit

(a) OpenMP thread copy time,
subdomain left and right halo values

1 2 3 4 5

Time (s) 10-7

0

2

4

6

8

10

12

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(b) OpenMP thread copy time,
subdomain top and bottom halo
values

0 0.2 0.4 0.6 0.8 1

Time (s) 10-6

0

5

10

15

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(c) OpenMP thread copy time,
interior boundary row neighbor
values

1.5 2 2.5 3 3.5 4

Time (s) 10-7

0

1

2

3

4

P
ro

b
ab

ili
ty

 D
en

si
ty

107

data
fit

(d) OpenMP thread compute
time, boundary row values

2 2.5 3 3.5 4 4.5

Time (s) 10-7

0

2

4

6

8

10

P
ro

b
ab

ili
ty

 D
en

si
ty

107

data
fit

(e) OpenMP thread compute and
update time, interior row values

2 4 6 8

Time (s) 10-7

0

5

10

15

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(f) OpenMP thread update time,
subdomain left and right boundary
values

2 4 6 8

Time (s) 10-7

0

2

4

6

8

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(g) OpenMP thread update time,
subdomain top and bottom
boundary values

2 4 6 8 10

Time (s) 10-7

0

2

4

6

8

10

12

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(h) OpenMP thread update time,
interior boundary row values

1 1.2 1.4 1.6 1.8 2

Time (s) 10-7

0

0.5

1

1.5

2

2.5

P
ro

b
ab

ili
ty

 D
en

si
ty

108

data
fit

(i) OpenMP thread compute time,
thread residual norm
component

2 2.5 3 3.5 4

Time (s) 10-7

0

0.5

1

1.5

2

2.5

P
ro

b
ab

ili
ty

 D
en

si
ty

107

data
fit

(j) OpenMP master thread compute
time, subdomain residual
norm

0 2 4 6 8

Time (s) 10-5

0

2

4

6

8

10

12

P
ro

b
ab

ili
ty

 D
en

si
ty

105

data
fit

(k) OpenMP master thread copy
time, subdomain boundary values

0 2 4 6

Time (s) 10-5

0

5

10

15

P
ro

b
ab

ili
ty

 D
en

si
ty

105

data
fit

(l) OpenMP master thread update
time, subdomain halo values

4 6 8 10 12

Time (s) 10-7

0

2

4

6

8

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(m) MPI master rank communication
and update time, global residual
norm

4 5 6 7 8

Time (s) 10-6

0

0.5

1

1.5

2

2.5

3

P
ro

b
ab

ili
ty

 D
en

si
ty

106

data
fit

(n) MPI master rank communication
and update time, halo swap

Fig. 5: Empirically-measured histogram data and operation-time distributions used in predictive model.

0 0.2 0.4 0.6 0.8 1
OpenMP Master Thread Work-Scaling Factor

0

0.5

1

1.5

2

2.5

3

3.5

It
er

at
io

n
s

P
er

 S
ec

o
n

d

105

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Swap Period

(a) Rates, master thread

0 0.2 0.4 0.6 0.8 1
OpenMP Master Thread Work-Scaling Factor

1.16

1.18

1.2

1.22

1.24

1.26

It
er

at
io

n
s

P
er

 S
ec

o
n

d

105

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Swap Period

(b) Rates, non-master threads

Fig. 6: Predictive model results for work-scaling implementation. Iteration rates of master and non-master threads, as a
function of swap period and work-scaling factor.

0 0.2 0.4 0.6 0.8 1
OpenMP Master Thread Work-Scaling Factor

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

It
er

at
io

n
s

P
er

 S
ec

o
n

d

105

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Swap Period

Fig. 7: Iteration rates of all threads, as a function of swap
period and work-scaling factor.

8. Conclusions and Future Work
Modifying the halo swap strategy of the base hybrid-

parallel model WS1 provides significant performance im-
provements and equalizes error quantity in subdomain re-
gions. Generally speaking, the asynchronous implementa-
tions outperform the synchronous implementation for the
problem studied, however further optimization is possible
in both cases. While focusing on a single problem allows
for efficient implementations, in the future the Jacobi solver
could be generalized to solve an arbitrary problem instead of
being tuned specifically to the Laplacian. This would allow

0 0.2 0.4 0.6 0.8 1
OpenMP Master Thread Work-Scaling Factor

0

0.5

1

1.5

2

2.5

3

R
at

io
, I

m
:I

n
m

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Swap Period

Fig. 8: Ratio of iteration rates of master and non-master
threads, as a function of swap period Pswap and work-scaling
factor.

data to be collected over a range of different input param-
eters that could be used in a generalized predictive model,
such that problem-specific parameters may be considered or
queried.

Another avenue of future work lies in the direction
of experimenting with different asynchronous solvers. For
example, [29] proposed a parallel asynchronous Southwell
relaxation method that shows small communication cost.
Additionally, the use of one-sided remote memory access
[17] may help improve the implementations shown here.

Acknowledgments
This work was supported in part by the Air Force Office

of Scientific Research under the AFOSR award FA9550-
12-1-0476, by the U.S. Department of Energy (DOE) Of-
fice of Advanced Scientific Computing Research under the
grant DE-SC-0016564 and the Exascale Computing Project
(ECP) through the Ames Laboratory, operated by Iowa State
University under contract No. DE-AC00-07CH11358, by the
U.S. Department of Defense High Performance Computing
Modernization Program, through a HASI grant, the Turing
High Performance Computing cluster at Old Dominion Uni-
versity, and through the ILIR/IAR program at the Naval
Surface Warfare Center - Dahlgren Division.

References
[1] Hartwig Anzt. Asynchronous and multiprecision linear solvers-

scalable and fault-tolerant numerics for energy efficient high per-
formance computing. PhD thesis, Karlsruhe, Karlsruher Institut für
Technologie (KIT), Diss., 2012, 2012.

[2] Steve Ashby, PETE Beckman, Jackie Chen, Phil Colella, Bill Collins,
Dona Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul
Messina, et al. Ascac subcommittee report: The opportunities and
challenges of exascale computing. Technical report, Technical report,
United States Department of Energy, Fall, 2010.

[3] Steve Ashby, PETE Beckman, Jackie Chen, Phil Colella, Bill Collins,
Dona Crawford, Jack Dongarra, Doug Kothe, Rusty Lusk, Paul
Messina, et al. The opportunities and challenges of exascale
computing–summary report of the advanced scientific computing
advisory committee (ascac) subcommittee. US Department of Energy
Office of Science, 2010.

[4] Haim Avron, Alex Druinsky, and Anshul Gupta. Revisiting asyn-
chronous linear solvers: Provable convergence rate through random-
ization. Journal of the ACM (JACM), 62(6):51, 2015.

[5] Jacques M Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier.
Coupling dynamic load balancing with asynchronism in iterative
algorithms on the computational grid. In Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, pages 9–
pp. IEEE, 2003.

[6] Jacques M Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier.
Performance comparison of parallel programming environments for
implementing aiac algorithms. The Journal of Supercomputing,
35(3):227–244, 2006.

[7] Gérard M Baudet. Asynchronous iterative methods for multiproces-
sors. Journal of the ACM (JACM), 25(2):226–244, 1978.

[8] Iain Bethune, J Mark Bull, Nicholas J Dingle, and Nicholas J Higham.
Investigating the Performance of Asynchronous Jacobi’s Method for
Solving Systems of Linear Equations. To appear in International
Journal of High Performance Computing Applications, 2011.

[9] Iain Bethune, J Mark Bull, Nicholas J Dingle, and Nicholas J Higham.
Performance analysis of asynchronous Jacobi’s method implemented
in MPI, SHMEM and OpenMP. The International Journal of High
Performance Computing Applications, 28(1):97–111, 2014.

[10] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations and Trends®
in Machine Learning, 3(1):1–122, 2011.

[11] Steven C Chapra and Raymond P Canale. Numerical methods for
engineers, volume 2. McGraw-Hill New York, 1998.

[12] Daniel Chazan and Willard Miranker. Chaotic relaxation. Linear
algebra and its applications, 2(2):199–222, 1969.

[13] Yun Kuen Cheung and Richard Cole. A unified approach to analyzing
asynchronous coordinate descent and tatonnement. arXiv preprint
arXiv:1612.09171, 2016.

[14] Douglas V De Jager and Jeremy T Bradley. Extracting state-
based performance metrics using asynchronous iterative techniques.
Performance Evaluation, 67(12):1353–1372, 2010.

[15] Jack Dongarra, Jeffrey Hittinger, John Bell, Luis Chacon, Robert Fal-
gout, Michael Heroux, Paul Hovland, Esmond Ng, Clayton Webster,
and Stefan Wild. Applied mathematics research for exascale com-
puting. Technical report, Lawrence Livermore National Laboratory
(LLNL), Livermore, CA, 2014.

[16] Andreas Frommer and Daniel B Szyld. On asynchronous iterations.
Journal of computational and applied mathematics, 123(1):201–216,
2000.

[17] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. Enabling
highly-scalable remote memory access programming with MPI-3 one
sided. Scientific Programming, 22(2):75–91, 2014.

[18] Mingyi Hong. A distributed, asynchronous and incremental algorithm
for nonconvex optimization: An admm approach. IEEE Transactions
on Control of Network Systems, 2017.

[19] James Hook and Nicholas Dingle. Performance analysis of asyn-
chronous parallel jacobi. Numerical Algorithms, pages 1–36, 2013.

[20] Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem.
Asynchronous distributed optimization using a randomized alternating
direction method of multipliers. In Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on, pages 3671–3676. IEEE, 2013.

[21] Erik Jensen and M. Sosonkina. Modeling a task-based matrix-
matrix multiplication application for resilience decision making. In
Proceedings of the 26th High Performance Computing Symposium,
HPC ’18, 2018.

[22] Tony Lindeberg. Scale-space for discrete signals. IEEE transactions
on pattern analysis and machine intelligence, 12(3):234–254, 1990.

[23] Gordon D Smith. Numerical solution of partial differential equations:
finite difference methods. Oxford university press, 1985.

[24] Kunal Srivastava and Angelia Nedic. Distributed asynchronous
constrained stochastic optimization. IEEE Journal of Selected Topics
in Signal Processing, 5(4):772–790, 2011.

[25] John C Strikwerda. Finite difference schemes and partial differential
equations, volume 88. Siam, 2004.

[26] Daniel B Szyld. Different models of parallel asynchronous iterations
with overlapping blocks. Computational and applied mathematics,
17:101–115, 1998.

[27] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed
asynchronous deterministic and stochastic gradient optimization al-
gorithms. IEEE transactions on automatic control, 31(9):803–812,
1986.

[28] KV Voronin. A numerical study of an mpi/openmp implementation
based on asynchronous threads for a three-dimensional splitting
scheme in heat transfer problems. Journal of Applied and Industrial
Mathematics, 8(3):436–443, 2014.

[29] Jordi Wolfson-Pou and Edmond Chow. Reducing communication
in distributed asynchronous iterative methods. Procedia Computer
Science, 80:1906–1916, 2016.

[30] Minyi Zhong and Christos G Cassandras. Asynchronous distributed
optimization with event-driven communication. IEEE Transactions on
Automatic Control, 55(12):2735–2750, 2010.

	Introduction
	Related Work
	Problem Description
	Asynchronous Iterative Methods
	Hybrid Implementations
	Performance Results
	Predictive Model
	Model Results

	Conclusions and Future Work
	References

