Implementing Asynchronous Linear Solvers Using Non-uniform
Distributions

1 2

Evan Coleman Erik Jensen Masha Sosonkina?

! Naval Surface Warfare Center, Dahlgren Division
2 Old Dominion University; Computational Modeling & Simulation Engineering Department

Categories: Computing methodologies~Linear algebra algorithms, Computing methodologies~Massively parallel al-
gorithms, Applied computing~Mathematics and statistics
Keywords: Asynchronous iteration, linear solvers, randomized linear algebra

Abstract

Asynchronous iterative methods may improve the time-to-solution of their synchronous counterparts on highly parallel compu-
tational platforms. This paper considers asynchronous iterative linear system solvers that employ non-uniform randomization and
develops a new implementation for such methods. Experiments with a two-dimensional finite-difference discrete Laplacian prob-
lem are presented. The new finer grain implementation is compared with an existing, block-based, one and shown to be superior
in terms of the convergence speed and accuracy. In general, using non-uniform distributions in selecting components to update
may lead to faster convergence. In particular, the new implementation convergences up to 10% faster when it uses a non-uniform
distribution.

1 Introduction

Asynchronous iterative methods describe a class of parallel iterative algorithms where each computing element is
allowed to perform its task without waiting for updates from any of the other processes. These methods are often
applied to the parallel solution of fixed-point problems and have been used in a wide variety of applications including:
the fault-tolerant solution of linear systems [1], the preconditioning of linear solvers [6], and optimization [16], among
many others. These solvers tend not to converge to high precision as quickly as their Krylov subspace counterparts;
however, they can converge very quickly to a low level of accuracy [3]. This loss of accuracy may cause the use
of asynchronous linear solvers to be suboptimal for some applications, but the fact that they are able to reach an
approximate solution quickly opens up several other application areas. Possible use cases include preconditioning to
a Krylov method, solving systems that may not need a high level of accuracy (e.g., big data and machine learning), or
smoothing a multigrid method.

Under study here are asynchronous iterative methods for solving linear systems of the form Ax = b, such as
asynchronous Jacobi. One way to attempt to improve the performance of asynchronous linear solvers is to have each
processor select randomly the (block of) components it updates next, as opposed to fixing an update order a priori.
This approach has been studied previously by [3], for the case where the random selection is done uniformly. Our
work continues to investigate the potential performance increase of dynamically weighting the random selection of
the next component to update. In the synchronous case, weighting the selection using the norm of the row of A
associated with the selected component has been done previously [21, 12, 10]. However, the idea employed here is
to periodically sort and rank the residuals associated with each component and make the random selection using a
non-uniform distribution that is more likely to select components with a larger contribution to the residual. This is
motivated by the success of weighted stationary solvers, such as the Southwell iteration, which typically converge in
fewer iterations than traditional Jacobi or Gauss-Seidel relaxation schemes do so (see e.g., [18] and[22]).

The preceding work, Enhancing Asynchronous Linear Solvers through Randomization, studied using a non-
uniform distribution to select components to update. The present work extends that work in [7] by making the
following new contributions:

* Proposes a new row-based randomized asynchronous linear solver with a significantly different approach to the
selection of components to update;

* Develops an alternative component ordering criterion that uses component differences instead of residuals;

* Observes experimentally that new row-based solver exhibits convergence in fewer component relaxations than
serial Gauss-Seidel;

* Compares the performance of the block- and row-based solvers and demonstrates that the proposed new solver
improves upon the block-based one.

The structure of the rest of the paper is as follows: Section 2 provides information on related studies. Section 3
gives an overview of asynchronous iterative methods. Section 4 provides the design of randomized asynchronous
iterative solvers that use non-uniform distributions. Section 5 presents experimental results, first, separately for each
of the two implementations considered in this work and follows with their comparisons. Section 6 concludes.

2 Related Work

The Department of Energy has commissioned two very detailed reports about the progression towards exascale level
computing; one from a general computing standpoint conducted by [2], and a report aimed specifically at applied
mathematics for exascale computing by [8]; both of which emphasize the importance of developing scalable algo-
rithms moving forward towards exascale platforms. Development of scalable applications on a large scale starts with
modifying algorithms that form the basis for those applications, and the stationary iterative methods examined here
(e.g., Jacobi, Gauss-Seidel, block variants) form an important aspect of many preconditioning techniques for Krylov
subspace methods, as well as commonly acting as smoother in multigrid methods.

Several recent studies focus on improving scalability by attempting to remove the synchronization delay: a fine-
grained algorithm for computing incomplete LU factors for the purposes of preconditioning of linear solvers was
created by [6], an optimization technique based upon an asynchronous approach to stochastic gradient descent was
created by [16], and the efficacy of asynchronous multigrid smoothers was explored for CFD applications in [11].

The use of randomization in linear algebra has found use in a variety of areas including transforming linear systems
using Random Butterfly Transformations to eliminate (with probability 1) the need for pivoting. This has been used to
aid in the performance of direct solvers for dense matrices by [15], and later adopted for sparse matrices by [4]. Other
examples include the random component selection in stochastic gradient descent methods, including an early study in
Srivastava and Nedic (2011) that incorporates asynchronous computation. More pertinent to the topic studied here,
randomized linear relaxation based solvers have been studied in the past by [19] who extend the original asynchronous
model presented by [5] to allow component choice and (theoretical) delay to be based upon probability distributions.

The present work follows a greedy approach, similar in spirit to the Southwell iteration. [22] extend a Southwell-
oriented approach to the case of parallel asynchronous solvers, whereby an equation is relaxed if it has the largest
residual among all coupled equations.

3 Overview of Asynchronous Iterative Methods

In asynchronous computation, each part of the problem is updated such that no information from other parts is needed
while each individual computation is performed. This allows each processor to act independently. The model that is
shown here to provide a basis for asynchronous computation comes mainly from [9]. To start, consider a fixed point
iteration with the function, G : D — D. Given a finite number of processors Py, P,,..., P, each assigned to a block B
of components By, B3, ...,B,,, the computational model can be stated as shown in Algorithm 1.

If each processor (FP;) waits for the other processors to finish each update, then the model describes a parallel
synchronous form of computation. If no order is established for the processors, then the computation is asynchronous.

At the end of an update by processor F;, the components associated with the block Bp, will be updated. This results
in a vector, x = (x}' &) ,x?(k), o1 ®)y \where s; (k) indicates how many times component / has been updated, and is
a global iteration counter that is updated every time that any processing element makes an update. A set of indices I*
contains the components that were updated on the k' iteration. Given these definitions, the three following conditions

provide a framework for asynchronous computation:

Definition 1. [f the following three conditions hold:

Algorithm 1 General Computational Model

for each processing element P; do
for i=1,2,..., until convergence do
Read x from shared memory
Compute x"]»+1 = Gj(x) forall j € Bp,
Update x; in common memory with xi-*l forall j € Bp,
end for
end for

1. s;(k) <k—1, i.e., only components that have finished computing are used in the current approximation.
2. limy_ye0 5;(k) = oo, i.e., the newest updates for each component are used.
3. [k eN:l€I¥| = oo, ie., all components will continue to be updated.

Then given an initial xX° € D, the iterative update process defined by,

k—1
T e
! G(xWy 1elk,

where each Gi(x) uses the latest updates available, is called an asynchronous iteration.

This basic computational model provided by the combination of Algorithm 1 and Definition 1 allows for many dif-
ferent results on fine-grained iterative methods. In particular, the authors’ earlier work ([7]), introduced a block-based
randomized asynchronous linear solver that used non-uniform distributions for dynamically prioritizing components
to update.

Relaxation methods have been the focus of many studies related to asynchronous iterations starting with [5]. They
are typically used to solve linear systems of the form Ax = b and can be written as fixed point iterations that can be
expressed as

F=cxk+d, 1)

where C is the n X n iteration matrix, x is an n-dimensional vector that represents the solution, and d is another n-
dimensional vector that can be used to help define the particular problem at hand. The Jacobi method is a relaxation
method that can be used in an asynchronous manner and the update for a given component x; can be expressed as

-1
Xi=— [Zainj—bi‘| . 2)
R

This iteration can give successive updates to the x; component in the solution vector. In synchronous computing
environments, each update to an element of the solution vector, x;, is computed sequentially using the same data for the
other components of the solution vector (i.e., the values for x; in Eq. (2)). Conversely, in an asynchronous computing
environment, each update to an element of the solution vector occurs when the computing element responsible for
updating that component is ready to write the update to memory and the other components used are simply the latest
ones available to the computing element. Expressing Eq. (2) in a block form similar to Eq. (1) gives an iteration matrix
of C = —D~'(L+U) where D is the diagonal portion of A, and L and U are the strictly lower and upper triangular
portions of A respectively. Convergence of asynchronous fixed point methods of the form presented in Eq. (1) is
determined by the spectral radius of the iteration matrix, C.

Theorem 1. For a fixed point iteration of the form given in Eq. (1) that adheres to the asynchronous computational
model provided by Algorithm 1 and Definition 1, if the spectral radius of C, p(|C|), is less than one, then the iterative
method will converge to the fixed point solution.

If x* is the fixed point of the iteration defined by the matrix C, then convergence is given by ensuring that the error
at a given iteration, ||x('") — x*||, is sufficiently small. In practice, this is accomplished by verifying that the residual,
r®) = p— Ax®) | is beneath a given threshold. Asymptotic results such as this, i.e. that guarantee eventual convergence
but offer no guarantee as to the rate of that convergence, exist for many variants of the iteration described above (see
[9] for a summary).

3.1 Randomized Linear Solvers

The use of randomization in asynchronous linear solvers allows for the possibility of statements concerning the rate of
convergence to be made. A randomized Gauss-Seidel method was introduced by [12] building off of the randomized
Kaczmarz algorithm proposed by [21], whereby the decrease in the expected value of the error at each step is bounded.
The analysis was generalized by Griebel and Oswald who also added a new parameter that allows for both over and
under relaxation [10]. Both of these studies weight the random selection of row i by the size of the element a;; € A. In
the case that A has unit diagonal this simplifies to a uniform distribution. More recently, [3] build upon the analysis by
[12] and [10] and explicitly analyze the case of asynchronous computation with a uniform distribution.

All of the methods select the vector component to update (see Eq. (2)) from a random distribution instead of
either sequentially looping through the available components or by tying the updates for a single component to a
particular processor. In a traditional parallelization of either a synchronous or asynchronous linear solver, processor j is
responsible for updating component j; the asynchronous variant allows processor j to continue to compute relaxations
for the component assigned to it regardless of the state of the other processors. The use of randomization in the
selection of which component to update allows for the possibility of any processor updating any component. In a
randomized asynchronous linear solver, when a processor finishes computing an update to a component, it writes the
update to the shared memory and then randomly draws the next component to update from the list of all available
components. In the randomized asynchronous linear solvers proposed by others to date, this random selection is
always done using either uniform random number generation, or with a probability proportional to a row norm of
the matrix A. Leventhal and Lewis cite Fourier analysis [12] as an application area that can benefit from this type of
weighting; however, there is no reason not to expect improved behavior for an arbitrary problem. The authors have
proposed in [7] to use the non-uniform distributions in the asynchronous Jacobi iterative method. In this work, efficient
implementations of such an iterative method are investigated.

3.1.1 Southwell Algorithm

The Southwell algorithm [18] works similarly to Jacobi by relaxing a single equation at a time, but chooses the
equation with the largest local contribution to the residual. For a given row i, this local contribution is defined to be

Y = b — Ax 3)

at iteration k. This difference allows the Southwell algorithm to often converge in fewer iterations than Jacobi, but
raises the expense of computing an update since the local residuals need to be stored and ranked at each iteration. After
a given iteration, the Southwell algorithm chooses the component that contributes the most to the global residual; thus,
the algorithm ranks the residuals from largest to smallest. Using the insight from the Southwell algorithm, the idea
behind the randomized linear solvers developed here is for each processor to select the next component for updating
randomly, using a distribution that more heavily weights selection of components that contribute more to the global
residual. Pseudo-code for a randomized variant is provided in Algorithm 2. The key difference of the present work is
that here non-uniform distributions in Line 3 of Algorithm 2 are investigated.

Algorithm 2 Generic Randomized Linear Solver

1: for each processing element F; do

2. fori=1,2,..., until convergence do

3 Pick j € {1,2,...,n} using a given probability distribution
4 Read the corresponding entries of A, x,b

5: Perform the relaxation for equation x;

6 Update the data for x;

7. end for

8: end for

In an effort to simulate the effect of the Southwell algorithm using randomized asynchronous solvers, the local
residuals associated with each equation (or block of equations) are ranked and sorted, and the selection of the next
equation (i.e., component) to update is performed using a non-uniform distribution that forces the random selection
to pick components with larger local residuals more frequently. The goal behind the proposed modification is that
relaxing the components with a more significant contribution to the global residual may reduce the total number of

iterations required. Motivation for this comes from a myriad of different studies, see for instance the paper [14]
that shows that for some cases (Gauss-)Southwell selection can converge faster than uniform random selection for
coordinate descent. In general, the improvement in convergence will have to be shown to be significant enough to
offset the extra computational and communication cost associated with storing and ranking all of the local residuals.
To help offset the increased computational expense, the periodicity with which the sorting and ranking procedures are
done is experimented with since it contributes directly to the overall efficiency of the algorithm.

4 Asynchronous Solver Design with Non-Uniform Distributions

The focus here is initially on the potential performance of different randomized asynchronous linear solvers through
a series of tests in MATLAB® (Section 4.2), followed by the descriptions of two shared-memory algorithms, block-
based and a novel row-based, in Sections 4.3 and 4.4, respectively.

4.1 Problem Description

This work examines the asynchronous Jacobi relaxation algorithm for solving finite-difference discretizations of PDEs
on a regular grid. In science and engineering, partial differential equations mathematically model systems in which
continuous variables, such as temperature or pressure, change with respect to two or more independent variables, such
as time, length, or angle [17]. The specific problem under study here is Laplace equation in two dimensions:
2 2
vg-20.990 4, @)
dx2 0y?

where the two-dimensional finite-difference discretization uses Dirichlet boundary conditions. This PDE, which is a
fundamental equation for modeling equilibrium and steady state problems, is also used in more complex problems
based on PDEs. Equation (4) may be discretized such that a finite difference operator computes difference quotients
over a discretized domain. For example, the two-dimensional discrete Laplace operator

(V2f) (x,9) = fFx=1,y) + flx+ Ly) + fx,y— 1)+ flx,y+ 1) —4f(x,y) (5)

approximates the two-dimensional continuous Laplacian using a five-point stencil [13]. From this, a discretized ver-
sion of the Jacobi algorithm
1
k+1 k k k k
Vz;rn = 1(Lt TVt Vi1 T Vim1) 6)
may be applied to solve a two-dimensional sparse linear system of equations [20]. Indices /,m, and k define discrete
grid nodes in two dimensions and the iteration number, respectively, for updating the discretized solution vector v.

In the particular instance of this 2D Laplacian problem, as solved with the Jacobi method here, the grid of 800 x
800 is used to obtain experimental results, the Dirichlet boundary conditions are 100, 0, 75, and 50 for the top, bottom,
left, and right boundaries, respectively; the solution vector v is initilalized to O in each non-boundary grid point, and
the right-hand side vector b is equal to the initial v.

4.2 Proof-of-Concept

Preliminary experiments are performed using MATLAB®, to demonstrate the improvement in convergence with
Southwell and with non-uniform component selection, compared with Jacobi and with uniform component selection,
for the problem tested in this work. As an example of potential convergence rates, Fig. 1 shows the progression of the
residuals over the first 10,000 iterations when solving the two- and three-dimensional finite-difference discretizations
of the Laplacian over a 10 x 10 and 10 x 10 x 10 grids, respectively. Here, the four solution methods used are the
traditional synchronous Jacobi algorithm, a traditional Southwell algorithm, and two randomized linear solvers: one
choosing the component to update using a uniform random distribution, and another using an exponential random
number distribution with the parameter A = 2. Note that the convergence of the randomized linear solver using the
uniform distribution is slightly inferior to traditional solvers and to the one with exponential distribution. The latter
performs on par with the Southwell, both in the 2D and 3D cases.

1.2 T T T T T T T T T 1.2 T T T T T T T T T
Jacobi Jacobi
1 Uniform Distribution R Uniform Distribution
© —— Southwell © —— Southwell
-g Exponential Distribution -g Exponential Distribution
‘» 08 ‘n osf
[0} (0]
© x
e t ie] L
o 06 o 06
N N
[04 [0.4F
£ £
o @]
Z o2t Z 0
0 , , . — o , , , , , , , , ,
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iterations Iterations
(a) 2D problem (5-pt stencil, 10 x 10 grid) (b) 3D problem (27-pt stencil, 10 x 10 x 10 grid)

Figure 1: Residual (r/ro) progression for the first 10,000 iterations of four stationary methods solving the 2D (a) and
3D (b) Laplacian.

[USN
N\
N=A
)

Figure 2: Block assignment used in the 800 x 800 grid of the example problem. The blocks consist of all components
in a five-row section of the grid. This incorporates 4000 of the 640,000 grid points into each block resulting in 77 = 160
blocks.

Algorithm 3 Block Variant of Randomized Linear Solver

1: Input: ranking period 7, number of block-rows 71, number of block-relaxations m, probability distribution function
f

2: Set ¢ = 0 counter for all block relaxations

3: for each thread do

4. fori=1,2,..., until convergence do

5 if thread is master and (¢ mod 7) is O then
6 Rank and sort block residuals

7: end if

8 Pick j € {1,2,...,Ai} using f

9: Perform m relaxations on block B;
10: Update the data for B;

11: c=c+m
12: end for
13: end for

4.3 Block-based Algorithm

The following block-based algorithm design has been introduced in [7] and is provided here as the reference for a wider
performance analysis and comparison with the novel, row-based, algorithm. In the task-based asynchronous solver, a
thread chooses a block of grid rows to update by sampling from a distribution. The number it draws corresponds to
an index in a list of blocks, ranked in order of descending component residuals. For example, if a thread draws the
number zero from the distribution, it will update the block-row of components with the largest residual, assuming that
block is not being updated by another thread. In the case that a thread selects a block that is already being worked on
by another thread, the selecting thread searches sequentially either up or down in the rankings until it finds an available
block.

Initially, block residual rankings are assigned via a natural ascending ordering (see Fig. 2). A single thread,
denoted the residual ranking thread, is tasked with computing the component residuals, sorting the residual rankings,
and updating the global ranking list that all the threads use to selects blocks for updating. Note that using a single
thread leads to a more accurate global ranking list and does not result in a bottleneck for a moderate number of threads.
For large-scale distributed implementations, a different ranking procedure has to be developed.

In this work, the residual ranking thread performs ranking and list-updating after every five iterations of the linear
system solver. Essentially, Algorithm 2 may be modified to include ranking periodicity T as shown in Algorithm 3.
This ranking period needs to be chosen judiciously, depending on several factors, such as the number m of relaxations
performed, the number of threads used, and the number 7 of block-rows to rank. Here, T = 5 was found experimentally
to mitigate the ranking overhead for the obtained number of iterations to convergence, while the number of relaxations
was varied. A more detailed investigation of the ranking periodicity is warranted and left as future work.

4.4 Row-based Algorithm

Algorithm 4 illustrates a novel row-based method . Similarly to Algorithm 3, the master thread periodically, every
T relaxations, ranks and sorts the rows (line 20). However, there are several important distinctions between the two
algorithms, due to which Algorithm 4 exhibits better performance. In line 10, a thread uses a probability distribution
function f to select a single target row to relax instead of a block of rows shown in Algorithm 3, and then transitions
from the current (start) row 7 to the target row r, by relaxing all the rows between 7 and r, in their natural ordering,
instead of jumping to the target row to relax next as done in the block-based implementation (Algorithm 3). Further-
more, while making this transition, a thread may move inward the domain or toward its top or bottom boundary rows,
depending on the direction of the shortest distance d,, Eq. (7) from the current start row to the target.

dy=min(n— [F—r|,[F—n)]), @)

where 7 is the total number of rows in the subdomain, and the direction of progression to the target is toward and
across the boundary if the first term in Eq. (7) is taken as d,,; otherwise, the boundary is not crossed. The former is also

chosen when the terms are equal. Then, in line 13, the nextr function assigns the next row number to consider by
decrementing or incrementing the row number 7 for the boundary or non-boundary progression direction, respectively;
and performing circular shift of the row numbers if they reach the boundary. Note that fewer than d, rows may be
relaxed if certain rows in the path towards the target row are not free, i.e., they are already being relaxed by another
thread at the time of their consideration, as specified by the conditional statement in line 14. A shared array of size n
maintains row availability, in which a threads “locks” the row number while it relaxes that row and releases the lock
upon finishing the operations in lines 15-20.

Algorithm 4 Row-Based Variant of Randomized Linear Solver

1: Input: probability distribution function f, ranking period 7, number of rows n

2: Set row-sum differences A = {8; = Nmax | j = 1,...,n}, where §; is row-sum difference between adjacent relax-
ations of row j and Npay is the largest double-precision number

3: Set row ranking R as ascending natural ordering

4: Set sorted rows S = (1,2,3,...,n)

5: Set ¢ = 0 counter for all row relaxations

6: for each thread do

7. Setr, € {1,2,...,n} for initial thread target row

8

9

fori=1,2,..., until convergence do

: Set previous target as new start row 7 =r,
10: Set target row r, from sorted rows S using f
11: Compute shortest distance d,, as in Eq. (7)
12: for j=1,...,d,do
13: Assign next row 7 = nextr(F, j) as described in Section 4.4
14: if 7 is free then
15: Perform a relaxation of 7
16: Update the data for 7
17: Compute row-sum difference 07 as in Eq. (8)
18: Setc=c+1
19: if thread is master and (¢ mod 7) is O then
20: Update ranking R and sorted rows S based on A
21: end if
22: end if
23: end for
24: end for
25: end for

The use of the shortest distance is motivated by an attempt to adhere to the ranking order of rows while also
relaxing in the neighborhood of the target row; thereby, making the transition to the target smoother. Additionally,
in a distributed-memory environment, the ability to more frequently relax boundary rows may facilitate a better data
movement among subdomains possibly leading to a faster convergence. Another distinction between the block-based
implementation and the row-based one is that the row-based performs the ranking of rows using row-sum differences
instead of residuals. In particular (see line 17), after every row 7 relaxation, a thread performs a summation o; of the
absolute values of all the components in 7 and updates the row-sum difference &7 Eq. (8):

& =|oy — o, @®)

where o; is the sum taken after the previous relaxation of 7. This difference 05 is assumed to be decreasing between
the two adjacent relaxations and arbitrarily small when the algorithm has converged. A strong linear relationship
has been observed between the row difference method rank and the row residual rank during the entire convergence
process. Table 1 presents a small sample of representative correlation coefficients R at regular intervals throughout a
sample calculation, which quantify the magnitude and direction of this relationship. Of the hundreds of thousands of
computed correlation coefficients, the minimum and mean coefficients are 0.77 and 0.96, respectively, with a standard
deviation of 0.02. Using this difference instead of residuals decreases the computational overhead of ranking the rows.
In particular, finding the row difference requires about 7 times fewer floating point operations per iteration than when

Table 1: Comparison of the row difference method rank with the row residual rank, for all rows, at various row ranking
iterations during the calculation. Correlation coefficient R quantifies magnitude and direction of relationship.

ROW RANKING ITERATION 0 20e3 40e3 60e3 80e3 100e3 120e3 140e3
R 099 099 096 095 0.97 0.96 0.97 0.98

using the row residual for this problem. Note, that, while it is shown that the difference-ranking method works for this
sample problem, it has not been tested with other types of problems.

S Implementation Results

The block-based and row-based algorithms are implemented and tested on two shared-memory computing platforms.
For both platforms and both implementations, results show that the calculation time decreases using non-uniform
distributions, compared with a uniform distribution. Additionally, the row-based implementation shows a decrease in
iterations, compared with Gauss-Seidel.

5.1 Experimental Design

The experiments using OpenMP® are conducted on two computing platforms at Old Dominion University' The Rulfo
system has an Intel®Xeon Phi"™'Knight’s Landing 7210 model processor with 64 cores running at 1.30 GHz and
112 GB of DDR4 physical memory used as DRAM in these experiments. One thread per core is utilized, with one
core reserved for interfacing with the operating system, resulting in 63 computational threads for the experiments
in Section 5.2. On the Wahab system, a single node of the cluster is utilized, containing two Intel Xeon Gold 6148
CPUs each with 20 physical cores and 376 GB of DDR4 memory. The code uses standard C++ routines for sorting
residuals and generating random numbers, with the default parameters and the built-in distributions. Experimental
parameters are presented in Table 2.

5.2 Block-based Implementation on Rulfo

For block selection, three different distributions are tested. The uniform distribution is used as a control; a thread may
select any block with equal probability. The normal distribution is used to examine the effects of targeting different
segments of blocks in the rankings, i.e., blocks with lower ranks and higher residuals versus blocks with higher ranks
and lower residuals. This is achieved by varying the mean parameter it while keeping the standard deviation o fixed in
the normal distribution. The exponential distribution, with the mode A close to zero, will tend to sample lower-ranked
blocks.

For both normal and exponential distributions, the algorithm convergence may be observed in Figs. 3 and 4,
respectively. Here and in figures throughout Section 5, the term Recording Iteration points out that the data is recorded
by a thread every 1,000 iterations. For the normal distribution, it may be observed in Fig. 3a that the convergence
rate depends strongly on u: Its smaller values (up to u = 46) lead to rapid convergence whereas, at u = 46, the
convergence sharply deteriorates. This may be also observed when considering the time-to-solution in Fig. 3b. Due
to very slow convergence, at large y values, the normal distribution becomes extremely non-competitive with the
uniform distribution, which timing is shown as red dashed line in Fig. 3b. Figure 4a shows that the parameter A for
the exponential distributions does not have as much an impact on performance as the parameter i does so for the
normal distribution runs. As A moves farther away from zero, however, it hinders convergence and the exponential
distribution results in slower timings than those obtained with the uniform distribution as seen in Fig. 4b. Once the
best parameter choices are found for normal and exponential distributions, their performances compare favorably to
the uniform distribution (Fig. 5), and up to 10% and 13% fewer iterations are observed, respectively.

Figure 6 provides a more detailed explanation for performance differences based on the selection of . In partic-
ular, Figs. 6a and 6b depict that the ordered component residual values for u equal to 16 and 44 and are nearly indis-
tinguishable. However, when increases to 48 (Fig. 6¢) and then again to 52 (Fig. 6d) residuals of the lowest-ranked
blocks decrease slowly while the residuals of all other blocks decrease more quickly. Note that all the block-based

I'The code is available from the corresponding author by request.

Table 2: Experiment parameters for BLOCK-BASED and ROW-BASED implementations run on Rulfo and Wahab
platforms (column Hardw). The number of OpenMP® threads is shown in column Thrds. The problem (grid) size is
shown in column Grid. The number of rows considered by a thread at a time is given in column Block. Input tolerance
for the algorithm convergence is provided in column Tol, while the ranges of the normal (i, c) and exponential A
distribution parameters are provided in columns Norm and Expo, respectively.

‘ Hardw Thrds Grid Block Tol Norm Expo
BLOCK-BASED | Rulfo 63 800 x 800 5 le3 (16-54,8) 0.01-0.8
BLOCK-BASED | Wahab 40 800 x 800 5 le3 (16-40,8) 0.01-0.8
ROW-BASED Wahab 40 800 x 800 1 le-3 (80—400,40) 0.002-0.16
k=] 5 104f — . :]
8 10°1 n 1 ‘—v—mln —=—mean
< —16 —46-2 —46-5
=> —44 —46-3
n 46-1 46-4
E O
S 10° © 103"
2 £
o =
©
o
255
O ' ' ' 102;.___________.. ________
0.5 1 . 15 © 20 30 40 50
Recording lteration (x107) 7
(a) Convergence history; (b) Time-to-solution: minimum, average, and maximum tim-
For a given u, ‘-1°,...,°-5” enumerate the runs ings over 5 runs

Figure 3: BBI convergence for normal distribution.

‘—v—min —=—mean max

—0.01 —0.4 0.8

Global Residual Squared
=
o

0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Recording Iteration (x 104) A
(b) Time-to-solution: minimum, average, and maximum tim-

a) Convergence histo. .
@ & vy ings over 5 runs

Figure 4: BBI convergence for exponential distribution.

10

10°F Dist., Param. ||

—Norm., p=16

— Expo,\=0.02
Uniform

Global Residual Squared
=
o

0.2 0.4 0.6 0.8
Recording Iteration (x 104)

Figure 5: BBI convergence history comparisons among distributions in the best case.

Block Component Rank

150 L il ‘ , ‘ i ‘
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
Recording lteration (x1 04) Recording Iteration (x 104)

T

-2
-4
-6
-8
-10
-12

’ ‘ -14

015 1 1-.5‘ 2 25 3 4 8 12

Recording Iteration (x 104) Recording Iteration (x 104)

(c) u=48 (d) u=52

Figure 6: Block-row residuals for calculations using normal distributions.

11

Log, o of Component Residual Squared

& , é
‘é 50 . §
8 100 10 g_
§ 12 &;o
m 150 ‘ ‘ ‘ | ‘ ww—" ‘ ‘ ool
02 04 06 08 1 02 04 06 08 1 12
Recording Iteration (x 104) Recording Iteration (x 104)
(a) 1=0.01 (b) 2=0.8

Figure 7: Block-row residuals for calculations using exponential distributions.

implementation (BBI) experiments use 8 for o, which is appropriate for all the chosen u ranges of 16 to 54 on Rulfo
and 16 to 40 on Wahab.

Figures 7a and 7b show that, for the minimum and maximum values of A, respectively, the component residual
decrease is balanced among the component ranks as iterations progress.

5.3 Row-based Implementation on Wahab

The results of the BBI show that non-uniform probability distribution functions may be used to efficiently select
components to update, leading to convergence for the sample problem used in this work. However, relaxing blocks
of rows asynchronously tends to cluster errors on block boundaries, and thereby hindering convergence. A row-based
implementation (RBI) has been introduced to mitigate this problem. Here, the RBI solves the same sample problem
in shared memory as BBI (see Section 5.2). Recall that RBI does not consider blocks of rows to be relaxed by a single
thread. Instead, a thread selects only a single row to relax at a time.

For row selection, as with the BBI, the same three distributions are tested. Again, the uniform distribution is used
as a baseline for comparison with the normal and exponential distributions. Similar to the BBI experiments, the nor-
mal and exponential distributions are geared to consider different ranges of row numbers by, respectively, keeping the
standard deviation ¢ parameter fixed and the parameter A close to zero. Figure 8a shows the diminishing row differ-
ences as the system converges, and the disparity between the rows with the least and greatest differences decreases.
In Fig. 8b, initially the lowest-index rows have the greatest differences since these are the boundary rows, and in ef-
fect, the greatest discontinuity initially is between the top boundary and the first row of grid points (see Section 4.1).
Conversely, the least discontinuity initially is between the bottom boundary and the last row of grid points. These
respective discontinuities are reflected in the row component differences of consecutive iterations, i.e., the top row
initially changes quickly, while the bottom row changes slowly. However, as the calculation progresses, the change in
the first rows decreases. For most of the calculation, the middle rows experience the most change.

For the normal distribution, Fig. 9 shows the effects of choosing appropriate and excessively large values of the
normal distribution mean parameter u, values of 80 and 400, respectively. Note that the normal distribution standard
deviation parameter ¢ is kept at 40, which is appropriate for the range of u values considered for RBI here. Compared
with Fig. 9a, Fig. 9b shows increased iterations, greater row-difference disparity between bottom and top-ranked rows,
and increasing row differences for ranks 300-400 during the first 1000 iterations. Similarly to Fig. 8b, Fig. 10 shows
the rank changes during the convergence processes albeit here for the normal distribution for the same parameters as
in Fig. 9. In Fig. 10a with p = 80, the middle rows are targeted so frequently that the ranks of the rows with the greatest
differences are pushed outward, toward the first and last ranks, much more than what is observed for the uniform and
normal with pu = 400 distributions (cf. Figs. 8b and 10b, respectively). For u = 400, because the lower-difference
rows are targeted more often, the group of high-ranked rows (shown as the middle yellow band) does not shift ranks
to the extent seen with the uniform distribution in Fig. 8b, and hence, is updated fewer times, which leads to inferior
convergence. This pattern is expected to continue for pt > 400. For the exponential distribution, Figs. 11 and 12 show
the progression of row differences and rankings, respectively. Here, both small and large values of A provide similar

12

100 100 700
200 e 200 600
a
';és 300 = 300 500 ¢
] ©
X 400 o 3 400 400 €
= S o g
@] o
& 500 S 500 300 @
D
600 S 600 200
700 700 100
800 - 800
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Recording Iteration Recording Iteration
(a) Row Differences (b) Row Rankings

Figure 8: Progression of row differences and rankings using a uniform distribution.

results and are equally effective, on par with good values of y when using the normal distribution. The convergence
history is presented in Fig. 13 for the three distributions and their respective parameter choices considered for RBI.
As expected, for the exponential distribution and the normal distribution with smaller p of 80, the residual decreases
more quickly than with the uniform distribution, whereas with the normal distribution parameter pt = 400, the residual
decreases the mostly slowly in Fig. 13.

5.4 Performance Comparison of Block- and Row-based Implementations

Here, block- and row-based implementations are mutually compared on the same platform, Wahab, as to their number
of relaxations and time to converge for a range of non-uniform distribution parameters y and A, as shown in Table 2.

Note that the distribution parameters in the row-based implementation differ from those used by the block-based
one, which reflects the sorted array sizes and different convergence behavior of the implementations. In particular,
for the given test problem, the BBI has 160 entities (blocks) to sort, while there are 800 entities (rows) to sort in
the case of RBI. The difference in convergence behavior is especially evident when comparing results from the two
implementations when both use normal distributions to select components. In Fig. 14a, for BBI, there is a distinct
difference in results for 4 = 44 and u = 46. For RBI, Fig. 14b shows a smoother transition between good and poor
normal distribution parameters. Note that good and poor, respectively, are termed so because they yield the calculation
times faster and slower than those for the uniform distribution test cases. In particular, the poor distribution parameters
are those starting with the first u that yields a significant jump in the calculation time; and this percentage increase for
RBI is taken to be comparable with the one in BBI. By comparing the results for the u values in Figs. 14a and 14b,
it is seen that the RBI tolerates a much higher relative value for pt than the BBI does so before significantly degrading
the performance. For example, while it = 46 is already a poor choice for the BBI, u = 230 (which is equal to 46 x 5
rows in a block) is still well within the range of good parameters for the RBI.

In addition, Figs. 14a and 14b compare the block- and row-based implementation iterations with the iterations of
serial Gauss-Seidel (shown as red horizontal lines), respectively, to converge for the sample problem. The BBI cannot
converge in fewer than serial Gauss-Seidel component relaxations even with the best distribution parameters. The
RBI, however, converges in about 10% fewer component relaxations than serial Gauss-Seidel, using non-uniform dis-
tributions with appropriate parameters. This happens consistently, although it has been shown theoretically that more
component relaxations may be required when threads update components asynchronously [3]. A better convergence
in the RBI compared with that in BBI may be attributed to the (fine-grained) ranking of rows rather than blocks and
to relaxing all the rows on the path from the current and the selected target one. Such a relaxation process leads to a
smoother transition between rows and possibly to relaxations of more rows by a thread at a time than those contained
in a block of the BBI. Although the row-based implementation ranks and sorts more entries than the BBI does so, the
former has faster time-to-solution (see Fig. 18) and is not hindered at large scales—where distributed implementations

13

1 1
100 100
0 0
200 = 200 &
a a
':‘%300 4= ':‘%300 1=
[e] o
T 400 Xy o
= s} = S}
$ 500 28 gs00 22
600 S 600 S
-3 -3
700 700
800 -4 800" -
500 1000 1500 2000 2500 3000 1000 2000 3000
Recording lteration Recording Iteration
(@) p =280 (b) =400
Figure 9: Progression of row differences using normal distributions.
700 700
600 600
500 & 500 ¥
& &
400
= 400
o (=}
300 300 @
200 200
100 100
0
500 1000 1500 2000 2500 3000 1000 2000 3000
Recording Iteration Recording Iteration
(a) 4 =80 (b) =400

Figure 10: Progression of row rankings using normal distributions.

14

1 1
100 100
0 0
200 = 200 &
a a
':‘%300 4= ':‘%300 1=
[e] [e]
T 400 Xy o
= s} = s}
$ 500 28 gs00 22
600 S 600 S
-3 -3
700 700
800 -4 800 -
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Recording lIteration Recording Iteration
(a) A =0.02 (b) A =0.16
Figure 11: Progression of row differences using exponential distributions.
700 100 700
600 200 600
500 & 300 500 <
© = ©
400 L 3400 400
: & :
300 500 | 300 @
200 600§ 200
100 700 100
0 800
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
Recording Iteration Recording lteration
() A =0.02 (b) A =0.16

Figure 12: Progression of row rankings using exponential distributions.

15

a

Dist., Param. ||
—Norm., ©=80
—Norm., u=400
—Expo.,A=0.02
—Expo.,A=0.16
—Uniform

=
o

Global Residual Squared
[E=Y
o

[Eny
S,
(&2}

0 0.5 1 15 2
Recording Iteration x10*

Figure 13: Change in residual throughout the calculation, for each distribution.

4% 10*t 4 X 10*t
2 \- Normal, p CZ]Expo., A -Uniform\ g \- Normal, p CZ]Expo., A -Uniform\
(@] =
T3t SER
% 3
o)
T2 Z2
o @
5 S
g1 gl I
E 5
O 0 O 0
SROSROHORSRS] 2 2 eI >
PO PHP YV x> S TP P ST
Distribution, Parameter Distribution, Parameter
(a) Block-based implementation (b) Row-based implementation

Figure 14: The total number of all the grid-component relaxations until convergence, for different probability distri-
butions and parameters. The red lines refer to the number of component relaxations for serial Gauss-Seidel.

16

x10° x10°

8 8
Il Normal, » Bl Normal, u
2 BN Expo., A o B Expo., A
o6 I Uniform Se [Uniform
T =
X ©
3 3
T4 —4
o iz
S 2
OS2 o2r
m ad
0 0 N
ORNM RN APV HRHOo O
R S I N R NN AL S TR P OO
Distribution, Parameter Distribution, Parameter
(a) Block-based implementation (b) Row-based implementation

Figure 15: The average number of (a) block and (b) row relaxations required to converge for different probability
distributions and parameters for the two implementations. The vertical lines in each bar show the standard deviation
of the number of row relaxations among all rows.

are a must—because ranking and sorting will be performed within each node independently.

Complementing the convergence comparisons of BBI and RBI from Fig. 14, Fig. 15 demonstrates (as vertical lines
in each bar) a greater variability in how often each block in BBI may be relaxed compared with each row relaxation
in RBI. This metric bears significance for the non-uniform distributions since they may “neglect” certain components
to relax often enough to hinder convergence, as has been shown earlier in Section 5, and thereby making a proof of
convergence more difficult.

5
(@) (b) x 10 (@) (b) <10
5 7
200 4.5 .
50 4 2 g | 200 6 v
S = 352 S 2 =
S ® (&) =
§ S 400 8 IS S 400 5 %
100 e @100 - 3
600 25 600 W5
2
150 150
800 800
Figure 16: The number of block (a) or row (b) relax- Figure 17: The number of block (a) or row (b) re-
ations required to converge with good normal distribu- laxations required to converge with poor normal
tion parameters. distribution parameters.

Figures 16 and 17 compare BBI and RBI as to which parts of the problem grid are relaxed more times when good
or poor U is used, respectively. For the former, Fig. 16 shows not only that both implementations emphasize the
relaxation of the middle rows, away from the fixed top and bottom boundaries, but also that the RBI places greater
emphasis on the rows near the top and bottom boundaries, and less emphasis on the middle rows, compared to the BBI.
In particular, about 15% of component selections result in a boundary-crossing event in the row based implementation,
which provides for relaxing all the rows more uniformly. With poor distribution parameters, Fig. 17 shows a different
behavior of the RBI from the one in Fig. 16. Now, the RBI relaxes boundary rows more frequently than it does so for
the innermost rows. In particular, some of the inner rows are now relaxed about as many times as for good u but the

17

0 0.2 0.4 0.6 0.8 0 0.05 0.1 0.15
100 ‘ ‘ ‘ ‘ 50 ‘ ‘ ‘
Distribution Distribution
gQ || ~®~Normal 2 48 |-=-Normal e
-+ Exponential -+ Exponential i
— - - Uniform : ~—~46 r|- - Uniform
&L 807 &£
0—‘ Q44
E 4ol e
— =40l a
60;—————--—————--—————--——_"—'_3—- 0 o
= - o SR ST - NPV Bocee BRI P RO +
50 : : : : : 38 : : : :
15 20 25 30 35 40 0 100 200 300 400
14 12
(a) Block-based implementation (b) Row-based implementation

Figure 18: Wahab calculation times for each implementation and all three distributions. Note the A-labeled axis
pertains to the exponential distribution trajectory while the u-labeled axis refers to the normal distribution trajectory.

boundary rows are relaxed more frequently leading to an overall higher number of iterations to converge. Generally,
the RBI permits more frequent relaxation of boundary rows, compared with the BBI. Note that the frequency of
boundary-row relaxation stays low for BBI given either value of u (cf. Fig. 16a and Fig. 17a). Such a beneficial
behavior of RBI is expressed in line 13 of Algorithm 4, in which the nextr function directs a thread to or from a
boundary row according to the shortest distance (line 11) as determined by Eq. (7).

Figure 18 shows that RBI decreases calculation time (Fig. 18b), compared with BBI(Fig. 18a) for all the distribu-
tions on the Wahab cluster. Furthermore, a 10% convergence-time reduction is observed for the row-based implemen-
tation using normal and exponential distributions with good parameter choices, as compared to a uniform distribution.
Figure 18b shows a gradual increase in calculation time for increasing values of u beyond 200, similar to the gradual
increase in numbers of relaxations seen in Figs. 14b and 15b. For BBI on the Wahab platform (Fig. 18a), the results
show a jump in calculation time when the normal distribution is used, which is also observed on Rulfo (cf. Fig. 3b)
albeit at a larger u value of 46. On Wahab, the BBI threshold u is 40, which suggests that, for the normal distribution
shared-memory implementation, good parameter selection is platform-dependent, as expected. In particular, having
more threads results in smaller size blocks, which may mitigate poor u selection in the BBI.

In addition to the performance benefit seen with the row-based implementation, Figs. 19 and 20 illustrate that
the RBI produces a solution with the residual values more uniformly dispersed among all components. For each
implementation, the plots display the two runs with the smallest and largest maximum component residuals, out of a
set of ten runs that use the exponential distribution with A = 0.05 for BBI and A = 0.01 for RBI. The BBI gives a mean
maximum component residual of 4.3e-11, with a standard deviation of 2.2e-11, while the row-based implementation
gives a mean of 1.0e-11 and a standard deviation of 1.6e-12. Note that the largest maximum component residual
produced by the RBI, as seen in Fig. 20b, is about half the size of the smallest component residual produced by the
BBI, as seen in Fig. 19a. Observe also that the variations between runs are less for RBI than they are for BBI.

6 Summary and Future Work

This paper develops and tests a novel implementation of a randomized asynchronous iterative solver that uses non-
uniform distributions. Complementing a traditional approach of block-row updates, this implementation blends aspects
of different solvers and relies on a finer granularity (row-based) of grid component updates. As a result, the row-based
implementation (RBI) improves on the block-based one in multiple aspects: solution quality, the number of iterations
required for convergence, and the calculation time. The RBI also supports a wider range of parameters that yield fast
convergence for the normal distribution.

For the two asynchronous randomized solver implementations, block-based and novel row-based, this paper
demonstrates a benefit of using a non-uniform distribution in prioritizing component updates. Both BBI and RBI

18

><10‘1_1 ><1o_'11

2.5 8 8 8

x o

200 2 £ 200 6 E
) Q

15 & S

T Qa o

400 £ 400 4 €
1 @) @)

@) @)

() (O]

600 05 = 600 2 e
> >

o o

800 0 9 800 0w

200 400 600 800 200 400 600 800
(a) Smallest (b) Largest

Figure 19: BBI solution component residual values from the runs with the smallest and largest maximum component
residuals, for exponential distribution, A = 0.05

><1o_‘12 ><10'1_1

8 & o

o o

200 s £ 200 1 g
c [

(@) (@)

400 4 & 400 =3
S 053

600 2 2 600 Qo
© ©

> >

(e O

800 ow 800 o »

200 400 600 800 200 400 600 800
(a) Smallest (b) Largest

Figure 20: RBI solution component residual values from the runs with the smallest and largest maximum components
residuals, for exponential distribution, A = 0.01

19

with non-uniform distributions converge 10% faster than their counterparts with the uniform distribution do so. The
row-based implementation may also converge with 10% fewer iterations than serial Gauss-Seidel, which is not ob-
served for the block-based implementation.

A further investigation into the ranking periodicity and technique for sorting the residuals is warranted in the scope
of studying the overall efficiency of future randomized asynchronous linear solver variants. Continuing to optimize
the implementations will improve their ability to be used either in a standalone capacity or as part of another solution
scheme, such as preconditioners for Krylov subspace methods or as smoothers in multigrid methods. Additionally,
testing on a more diverse problem set may reveal further benefits to the solver by dynamically focusing on the compo-
nents that are furthest from convergence.

Acknowledgments

This work was supported in part by the U.S. Department of Energy (DOE) Office of Science, Office of Basic Energy
Sciences, Computational Chemical Sciences (CCS) Research Program under work proposal number AL-18-380-057
and the Exascale Computing Project (ECP) through the Ames Laboratory, operated by Iowa State University under
contract No. DE-AC00-07CH11358, by the U.S. Department of Defense High Performance Computing Modernization
Program, through a HASI grant and through the ILIR/IAR program at the Naval Surface Warfare Center, Dahlgren
Division and by the National Science Foundation under grant CNS-1828593.

References

[1] Hartwig Anzt, Jack Dongarra, and Enrique S Quintana-Orti. Fine-grained bit-flip protection for relaxation meth-
ods. Journal of Computational Science, 2016.

[2] Steve Ashby, Pete Beckman, Jackie Chen, Phil Colella, Bill Collins, Dona Crawford, Jack Dongarra, Doug
Kothe, Rusty Lusk, Paul Messina, et al. Ascac subcommittee report: The opportunities and challenges of exascale
computing. Technical report, Technical report, United States Department of Energy, Fall, 2010.

[3] Haim Avron, Alex Druinsky, and Anshul Gupta. Revisiting asynchronous linear solvers: Provable convergence
rate through randomization. Journal of the ACM (JACM), 62(6):51, 2015.

[4] Marc Baboulin, Xiaoye S Li, and Francois-Henry Rouet. Using random butterfly transformations to avoid pivot-
ing in sparse direct methods. In International Conference on High Performance Computing for Computational
Science, pages 135-144. Springer, 2014.

[5] Daniel Chazan and Willard Miranker. Chaotic relaxation. Linear algebra and its applications, 2(2):199-222,
1969.

[6] Edmond Chow and Aftab Patel. Fine-grained parallel incomplete LU factorization. SIAM journal on Scientific
Computing, 37(2):C169-C193, 2015.

[7] Evan Coleman, Erik Jensen, and Masha Sosonkina. Enhancing Asynchronous Linear Solvers through Ran-
domization. In Proceedings of the 2019 Spring Simulation Multiconference (Submitted). Society for Computer
Simulation International, 2019.

[8] Jack Dongarra, Jeffrey Hittinger, John Bell, Luis Chacon, Robert Falgout, Michael Heroux, Paul Hovland, Es-
mond Ng, Clayton Webster, and Stefan Wild. Applied mathematics research for exascale computing. Technical
report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2014.

[9] Andreas Frommer and Daniel B Szyld. On asynchronous iterations. Journal of computational and applied
mathematics, 123(1):201-216, 2000.

[10] Michael Griebel and Peter Oswald. Greedy and randomized versions of the multiplicative schwarz method.
Linear Algebra and its Applications, 437(7):1596-1610, 2012.

[11] Aditya Kashi, Syam Vangara, and Sivakumaran Nadarajah. Asynchronous fine-grain parallel smoothers for
computational fluid dynamics. In 2018 Fluid Dynamics Conference, page 3558, 2018.

[12] Dennis Leventhal and Adrian S Lewis. Randomized methods for linear constraints: convergence rates and
conditioning. Mathematics of Operations Research, 35(3):641-654, 2010.

20

[13] Tony Lindeberg. Scale-space for discrete signals. IEEE transactions on pattern analysis and machine intelli-
gence, 12(3):234-254, 1990.

[14] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Coordinate descent converges
faster with the gauss-southwell rule than random selection. In International Conference on Machine Learning,
pages 1632-1641, 2015.

[15] D Stott Parker. Random butterfly transformations with applications in computational linear algebra. Technical
Report CSD-950023, 1995.

[16] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in neural information processing systems, pages 693-701, 2011.

[17] Gordon D Smith. Numerical solution of partial differential equations: finite difference methods. Oxford univer-
sity press, 1985.

[18] Richard Vynne Southwell. Relaxation Methods in Theoretical Physics: A Continuation of the Treatise, Relax-
ation Methods in Engineering Science, volume 2. The Clarendon Press, 1946.

[19] John C Strikwerda. A probabilistic analysis of asynchronous iteration. Linear algebra and its applications,
349(1-3):125-154, 2002.

[20] John C Strikwerda. Finite difference schemes and partial differential equations, volume 88. Siam, 2004.

[21] Thomas Strohmer and Roman Vershynin. A randomized kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15(2):262, 2009.

[22] Jordi Wolfson-Pou and Edmond Chow. Distributed Southwell: an iterative method with low communication
costs. In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis, page 48. ACM, 2017.

21

