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Abstract

As high-performance computing (HPC) platforms progress towards exascale,
computational methods must be revamped to successfully leverage them. In
particular, (1) asynchronous methods become of great importance because syn-
chronization becomes prohibitively expensive and (2) resilience of computations
must be achieved, e.g., using checkpointing selectively which may otherwise
become prohibitively expensive due to the sheer scale of the computing envi-
ronment. In this work, a simulation framework is proposed and tested to exam-
ine the potential benefit of asynchronous iteration for various HPC accelerator
architectures (which typically admit different granularities of computations).
Additionally, an example of a case study using the simulation framework is
presented to examine the efficacy of different checkpointing schemes for asyn-
chronous relaxation methods.

1 Introduction

Asynchronous iterative methods are increasing in popularity recently due to
their ability to be parallelized naturally on modern co-processors such as GPUs
and Intel Xeon Phis. Many examples of recent work using fine-grained parallel
methods are available (see [ADQO16, Anz12, CAD15, CP15, ACD15] and many
others in Section 2). A specific area of interest is on techniques that utilize fixed
point iteration, i.e. those equations of the form,

= Gla) (1)

for some vector x € D and some map G : D — D. These techniques are well
suited for fine-grained computation can be executed in either a synchronous or
asynchronous manner which helps tolerate latency in high-performance comput-
ing (HPC) environments. Looking forward to the future of HPC, it is important
to prioritize the develop of algorithms that are resilient to faults since on future
platforms, the rate at which faults occur is expected to increase dramatically
[CGGT09, CGGT14, ABCT06, GL09].



Developing algorithms that are resilient to faults is of paramount impor-
tance, and fine-grained parallel fixed point methods are no exception. This
study works towards creating a simulation framework for asynchronous iter-
ative methods that can be used to help develop algorithms that are resilient
to faults. Creating simulation frameworks such as this allows for experimen-
tation that is not specific to any singular platform or hardware architectures
and allows experiments to simulate performance on both current computing en-
vironments and look at how those results may continue to evolve along with
the computer hardware. These include the possibility to: (1) test and validate
different fault-models (which are still emerging), (2) experiment with different
check-pointing libraries/mechanisms, and (3) help in efficiently implementing
asynchronous iterative methods. Additionally, it can be difficult to implement
asynchronous iterative methods on a variety of architectures to observe per-
formance behavior in different computing environments, and having a working
simulation framework allows users to conduct extensive experiments without
any major programming investment.

While many asynchronous methods are designed for shared memory archi-
tectures, such as those found in GPUs, and asynchronous iterative methods
have gained popularity for their efficient use of resources on shared memory
accelerators in modern HPC environments such as GPUs [VV109], there has
been some work done at improving the performance of asynchronous iterative
methods using a distributed memory environment. This work includes attempts
to implement asynchronous iterative methods in MPI-3 using one sided remote
memory access [GBH14] as well as efforts to reduce the cost of communication
in these environments [WPC16].

The structure of this paper is organized as follows: in Section 2, a brief
summary of some related studies is provided. Section 3 provides an overview of
asynchronous iterative methods is given, while in Section 4, details concerning
the simulation framework used to model the performance of these methods are
given. Section 5 gives the background information related to the creation of
efficient checkpointing routines and provides a series of numerical results, while
Section 6 concludes.

Note that the experiments in this study were conducted on Rulfo, a system
powered by an Intel Xeon Phi Knight’s Landing 7210 model processor with
256 cores at 1.30 GHz each. Rulfo belongs to the High-Performance Computing
group of the Department of Modeling, Visualization and Simulation Engineering
at Old Dominion University. The simulation experiments (i.e. both the algo-
rithms and the fault simulation routines) were implemented in MATLAB, while
the programs used to validate the simulation were written in C/C++ using
OpenMP.

2 Related work

The expected increase in faults for future HPC systems is detailed in a variety
of different sources. A high level article detailing the expected increase in failure
rate from a reasonably non-technical point of view is available in the various
versions of the “Monster in the Closet” talk and paper [Geill, Geil2, Geil6].
More technical and detailed reports are given in a variety of sources composed
of groups of different researchers from both academia and industry [ABCT06,



CGG*T09, CGGT14, SWAT14, GL09]. Additionally, the Department of Energy
has commissioned two very detailed reports about the progression towards ex-
ascale level computing; one from a general computing standpoint [ABC*10a]
(summarized in [ABCT10b]), and a report aimed specifically at applied mathe-
matics for exascale computing [DHB14].

Examples of work examining the performance of asynchronous iterative
methods include an in-depth analysis from the perspective of utilizing a system
with a co-processor [Anz12, ADG15], as well as performance analysis of asyn-
chronous methods [BBDH11, HD13, BBDH14]. In particular, both [BBDH11,
BBDH14] focus on low level analysis of the asynchronous Jacobi method, similar
to the example problem presented here.

Several numerically based fault models similar to the one that is used in this
study have been developed recently, and are used as a basis for the generalized
fault simulation that is developed here. These include a “numerical” fault model
that is predicated on shuffling the components of an important data structure
[EHM15], and a perturbation based model put forth in [SW15] and [CS16b].
Other models that are not based upon directly injecting a bit flip, such as
inducing a small shift to a single component of a vector have been considered
as well [HH11, BFHH12]. Comparisons between various numerical soft fault
models have been made in [CS16a, CJBT17].

Fine-grained parallel methods, specifically parallel fixed point methods, are
an area of increased research activity due to the practical use of these meth-
ods on HPC resources. An initial exploration of fault tolerance for stationary
iterative linear solvers (i.e. Jacobi) is given in [ADQO15] and expanded on
in [ADQO16]. Fault tolerance for synchronous fixed point algorithms from
a numerical analysis has been investigated in [SW15]. Error correction for
GPU based oriented asynchronous methods were investigated in [ALDH12],
while the general convergence of parallel fixed point methods has been ex-
plored extensively [AB05, FS00, BT89, OR00, Bau78, Ben07]. Fault tolerance
for fine-grained asynchronous iterative methods has been studied at a fun-
damental level [Gar99, CS17], as well as made specific to certain algorithms
[CS17, CS18, ADQO15, ADQO16].

While many recent research results for asynchronous iterative methods are
focused on implementations that utilize a shared memory architecture, one area
of asynchronous iterative methods that has seen significant development using a
distributed memory architecture is optimization [CC16, IBCH13, Honl7, ZC10,
SN11, TBA86, BPCT11]

3 Asynchronous iterative methods

In fine-grained parallel computation, each component of the problem — i.e. a
matrix or vector entry — is updated in a manner that does not require infor-
mation from the computations involving other components while the update is
being made. This allows for each computing element (i.e. a single processor,
CUDA core or Xeon Phi core) to act independently from all other computing
elements. Depending on the size of both the problem and the computing en-
vironment, each computing element may be responsible for updating a single
entry to update, or may be assigned a block that contains multiple components.
The generalized mathematical model that is used throughout this paper comes



from [FS00], which in turn comes from [CM69, Bau78] and [Szy98] (among many
others).

To keep the mathematical model as general as possible, consider a function,
G : D — D where D is a domain that represents a product space D = D; X
Dy X -+ X Dy,. The goal is to find a fixed point of the function G inside of the
domain D. To this end, a fixed point iteration is performed such that,

xk+1 _ G(:L‘k), (2)

and a fixed point is declared if ¥T1 ~ 2*. Note that the function G has internal
component functions G; for each sub-domain, D;, in the product space, D. In
particular, G; : D — D;, which gives that

x=(x1,22,...,Zm) € D — G(z) = G(x1,x2,...Tm) (3)
= (G1(z),Ga(x),...,Gn(x)) € D. (4)

As a concrete example, let each D; = R. Forming the product space of each
of these D;’s gives that D = R™. This leads to the more formal functional
mapping, f : R™ — R™. Additionally, let f(#) = 2#. In this case, each of
the individual f; component functions is defined by f;(Z) = 2z;. Note that
each component functions operates on all of the vector & even if the individual
function definition does not require all of the components of Z to perform its
specific update.

The assumption is also made that there is some finite number of processing
elements P;, Py, ..., P, each of which is assigned to a block B of components
B4, Bs, ..., By, to update. Note that the number p of processing elements will
typically be significantly smaller than the number m of blocks to update. With
these assumptions, the computational model can be stated in Algorithm 1.

Algorithm 1: General Computational Model

1 for each processing element P, do

2 for : =1,2,... until convergence do

3 Read z from common memory

4 Compute xé“ =Gj(z) forall j € B

5 Update z; in common memory with xé” for all j € B;

This computational model has each processing element read all pertinent
data from global memory that is accessible by each of the processors, update the
pieces of data specific to the component functions that it has been assigned, and
update those components in the global memory. Note that the computational
model presented in Algorithm 1 allows for either synchronous or asynchronous
computation; it only prescribes that an update has to be made as an “atomic”
operation (in line 5), i.e., without interleaving of its result. If each processing
element P, is to wait for the other processors to finish each update, then the
model describes a parallel synchronous form of computation. On the other hand,
if no order is established for F;s, then an asynchronous form of computation
arises.

To continue formalizing this computational model a few more definitions
are necessary. First, set a global iteration counter k that increases every time



any processor reads £ from common memory. At the end of the work done
by any individual processor, p, the components associated with the block B,
will be updated. This results in a vector, & = (x‘;l(k), z?(k), e ,xfﬁn(k)) where
the function s;(k) indicates how many times an specific component has been
updated. Finally, a set of individual components can be grouped into a set,
I*, that contains all of the components that were updated on the k*" iteration.
Given these basic definitions, the three following conditions (along with the
model presented in Algorithm 1) provide a working mathematical framework
for fine-grained asynchronous computation.

Definition 1. If the following three conditions hold:

1. s;(k) < k—1, i.e. only components that have finished computing are used
in the current approrimation.

2. limg o0 8;(k) = 00, i.e. the newest updates for each component are used.
3. |k € N:i€IF| = o0, i.e all components will continue to be updated.

Then given an initial Z° € D, the iterative update process defined by,

P E N
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where the function G;(Z) uses the latest updates available is called an asyn-
chronous iteration.

This basic computational model (i.e. the combination of Algorithm 1 and
Definition 1 together) allows for many different results on fine-grained itera-
tive methods that are both synchronous and asynchronous, though the three
conditions given in Definition 1 are unnecessary in the synchronous case.

3.1 Asynchronous relaxation methods

Relaxation methods have been the focus of many of the works mentioned in
Section 2 such as [CM69] and [Bau78]; a much more detailed description can be
found in [BT89] among many other sources. This section provides an introduc-
tion that will serve as a reference for the later work in this study.

Relaxation methods can be expressed as general fixed point iterations of the
form,

2P =02k + d (5)

where C' is the n x n iteration matrix, = is an n-dimensional vector that rep-
resents the solution, and d is another n-dimensional vector that can be used to
help define the particular problem at hand.
The Jacobi method is an asynchronous relaxation method built for solving
linear systems of the form,
Az =b, (6)

and following the methodology put forth in [BT89], this can be broken down to
view a specific row — say the i*" — of the matrix A,

Zaijacj = bi, (7)
j=1



and this equation can be solved for the i*" component of the solution, z;, to
give,

Tr; = 71 Zaijxj — bl . (8)
Qi | <
J#i
This equation can then be computed in an iterative manner in order to give suc-
cessive updates to the solution vector. In synchronous computing environments,
each update to an element of the solution vector, x;, is computed sequentially
using the same data for the other components of the solution vector (i.e. the
x; in Eq. (8)). Conversely, in an asynchronous computing environment, each
update to an element of the solution vector occurs when the computing element
responsible for updating that component is ready to write the update to mem-
ory and the other components used are simply the latest ones available to the
computing element.
Expressing Eq. (8) in a block matrix form more similar to the original form
of the iteration expressed in Eq. (5),

r=-D"*(L+U)x—0) (9)
=-D YL+ U)z+D" (10)

where D is the diagonal portion of A, and L and U are the strictly lower and
upper triangular portions of A respectively. This gives an iteration matrix of
C=-D"YL+U).

Convergence of asynchronous fixed point methods of the form presented in
Eq. (5) is determined by the spectral radius of the iteration matrix, C, and
dates back to the pioneering work done by both [CM69] and [Bau78]:

Theorem 1. For a fized point iteration of the form given in Eq. (5) that adheres
to the asynchronous computational model provided by Algorithm 1 and Defini-
tion 1, if the spectral radius of C, p(|C|), ls less than one, then the iterative
method will converge to the fized point solution.

As noted in [WPC16], the iteration matrix C that is used in the Jacobi
relaxation method serves as a worst case for relaxation methods of the form
discussed here. However, because of the ubiquitous use of the Jacobi method
in parallel solutions of large problems in many different domains in science and
engineering we use the Asynchronous (Block) Jacobi method predominantly
throughout the remainder of this study. Note that many of the concepts and
ideas expressed in this paper can be easily adapted to more complex algorithms.

4 Overview of simulation framework

The simulation framework is designed to simulate the performance of an asyn-
chronous iterative method operating on multiple computing elements using a
single processing element. In this simulation framework, the emphasis is on
fixed-point iterations!

7= G(Z), (11)

IThroughout the text, vector notation is occasionally adopted to emphasize when functions
take all components of x as opposed to a single component, such as z7.



for some & € R™. In the framework, certain components are assigned (possibly
distinct) times for performing an update to their components, and the effects
of various delay structures can be examined.

As a simple example, take n = 2. Then ¥ = (x1,72) € R? and, using the
terminology of Section 3,

1 = Gl(f) = G1($1, .732), (12)

In a traditional fully synchronous environment, both functions, G; and Gs,
would be called simultaneously and no subsequent calls would be executed until
both functions had returned and synchronized all results. In a fully asynchronous
environment, both functions would be allowed to execute again immediately
upon their own return, leading to a case where one of x1 or o may be updated
more frequently than the other. Per Definition 1, both functions use the latest
values of ¥ that are available to them when the function call is initiated. For
instance, if the processing element that was assigned to update the component
x1 was ten times as fast as the processing element assigned to update x2, then
in the amount of time needed to update xs once, the component z; will have
been updated ten times, and when Gj is called for the second time it will be
called using the latest component of 21 (which has been updated 10 times), and
the latest component of x5 (which has only been updated once).

In the simulation framework, time is abstracted away to “units of time”. In
this manner, the relative timing between different components is the only metric
that matters. This allows the framework to be adapted to heterogeneous HPC
environments, as well as examining the potential impact of the standard vari-
ance of single core performance on multi-core hardware elements if the method
that is used is tuned to be completely asynchronous. Similarly, by adding or
removing appropriate communication penalties, different memory architectures
(i.e. distributed or shared) can be simulated.

As a more concrete example, let the matrix A result from a simple two
dimensional finite-difference discretization of the Laplacian over a 10 x 10 grid,
resulting in a 100 x 100 matrix with an average of 4.6 non-zero entries per row.
The Laplacian

Au =g, (14)
(15)

is a partial differential equation (PDE) commonly found in both science and
engineering. The example problems taken in this study can be thought of as
simulating the diffusion of heat across a two dimensional surface given some
heat source along the boundary of the problem.

Once the PDE is discretized over the desired grid using finite differences,
typically central finite differences, the linear system

Ax =b (16)

is set up to be solved for a random right-hand side b that represents the de-
sired boundary conditions. All problems considered in this study use Dirichlet
boundary conditions. For the examples in this particular subsection, the right-
hand side is generated by taking each component sampled as a uniform random



number between —0.5 and 0.5, and then normalizing the resultant vector. The
iterative Jacobi method proceeds until the residual

r=b— Ax (17)

is reduced past some desired threshold. Pseudocode for this simulated asyn-
chronous Jacobi is given in Algorithm 2.

Algorithm 2: Asynchronous Jacobi simulation

Input: a;; € A, initial guess for z, a number of processing elements p,
an input random number distribution
Output: Solution vector x
1 Assign processor update times. 7y, 7y, ...,7, by sampling from an
appropriate random number distribution
2 Assign elements z; € z to each simulated processing element

3 for t =1,2,... until convergence do

4 for each processing element P, do

5 if 7 =t then

6 for each element x; € x assigned to P, do

7 T; = ;7; Zj;ﬁi AT — bl:|

8 Retrieve a new update time 7; by sampling from the input

distribution

9 Calculate the residual as in Eq. (17) and check termination

conditions

Note that a given update time, 7, will not be sampled as an integer. The
simulation adjusts for this by scaling the number that is sampled by the ap-
propriate order of magnitude, adjusting the maximum value allowed for ¢ ac-
cordingly, and then scaling back the final time calculated by the simulation.
For example, if the desired time precision is hundredths of a second, and the
time resulting for the first sampling of 7, was 1.234s, then the simulation would
perform the following steps:

new __ old
1 % =517

new __ old
2. tmax =S5x* tmax

3. e = (1/s) #1833

final

where if the desired precision was hundredths of a second, s = 102, and the
sampled value would become,

T, = 1.234 — initial sample
T, = 123.4 — apply scale factor

Tk, = 123 — round to nearest integer

An example of nominal performance in a synchronous shared memory envi-
ronment (i.e. all processors update in the same amount of time and there is no
added communication penalty) is provided by Fig. 1.
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Residual
o
o

|
it

04

o _
0 100 200 300 400 500 600 700 8OO 900 1000
Units of time

Figure 1: Example of nominal performance of the synchronous Jacobi iteration

As an example of the types of experiments that can be conducted, consider
the same problem from above, but in two slightly more complicated scenarios.
In the first—captured Fig. 2(left)—one of the ten processors involved in updat-
ing blocks of components of x is provided updates more slowly than the other
processors. Each curve shows the progression of the (global) residual subject to

having a single slower processor with different degrees of slowdown (from zero
to 11x).
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Figure 2: Examples of experiments within the simulation framework

In the second scenario—see Fig. 2(right)—the processor updates are not
restricted to occur synchronously. Instead, the processors are assumed to have
similar performance and perform their updates in time t; ~ N(u,o?) where
the mean is set to 10 units of time and the variance is different for each curve
depicted in the plot.

4.1 Tuning the simulation framework

The simple experiments highlighted above showcase a particular use of this
simulation framework; namely, that it is easy to quickly generate data repre-
sentative of relative differences in the performance of the individual processing
elements. In order to observe the effect of some subset of the total processors
performing updates in an asynchronous manner, possibly due to an active hard-
ware issue on a node used, or to tie the simulation framework more closely with



true hardware performance and allow for extrapolation from a known point, a
framework tuning process must be employed.

To tune and validate the simulation to current representative HPC environ-
ments, tools were created that use OpenMP to implement the asynchronous
Jacobi method. These tools were executed on an Intel Xeon Phi Knight’s Land-
ing 7210 model processor.

Similar to Section 4, the test problem is a two dimensional discretization of
the Laplacian

Au=1b, (18)

where the right-hand side is initialized with Dirichlet boundary counditions.

Once data from representative performance code is obtained, metrics can
be taken on the pertinent performance data, and these metrics can be used to
help tune the simulation framework towards the desired model in order to allow
the simulation that is generated to produce meaningful results. This tuning
process has several benefits: In addition to providing empirical data with which
to validate the simulation, it also allows a meaningful start to extrapolating the
performance. Two implementations were set up to solve Eq. (18), and they will
be discussed separately in the following two subsections.

4.1.1 Implementation 1

The Laplacian was this time generated over a 100 x 100 grid resulting in a matrix
of size 10,000 x 10,000 with 49, 600 non-zeros with an average of 4.96 non-zeros
per row. The thread count used was varied and the following thread numbers
were utilized: 11, 21, 41, 51, 81, and 101. The vector b from the resulting linear
system,

Az =D, (19)
is initialized such that the final solution vector has x; = 1 for all 7, the initial
guess ¥ is all zeros.

In this implementation, each thread retrieves the data it needs from shared
memory, performs the necessary computations, and writes the result back to
shared memory. A dedicated thread computes the global residual value b —
Az® that determines satisfactory convergence. All threads use OpenMP locks

to safely copy z® from shared memory, whether calculating the residual or
computing myﬂ). Pseudocode for this process is given in Algorithm 3.

Algorithm 3: OpenMP Implementation 1

Input: a;; € A, initial guess for zg, a number of processing elements p
Output: Solution vector z
1 Assign elements x; € x to each processing element

2 for t =1,2,... until convergence do

3 for each processing element do

4 Copy the necessary components of z(*) from common memory
t+1 _ t

5 Compute xé + (Ti {Z#i aijl’; ) _ bz}

6 Update xg-t) in common memory with x§t+1) for j assigned to the

current processing element

10



For each trial, the times for each thread to access the memory it needs (Line 4
of Algorithm 3), compute the relaxation for the rows assigned to it (Line 5), and
to write the updated answer back to common memory (Line 6) were captured.
Data was collected over multiple experiments, and this data was used to match
a random number distribution that can be used to draw random numbers in-
dicating the amount of time needed for a simulated processing element in the
framework described above. This distribution can then be used as an input
parameter to Algorithm 2 to generate random numbers that can be used to
accurately predict update times for the various computing elements within the
desired HPC architecture. For this particular problem, a lognormal distribution
was found to match the data most closely. The pertinent parameters, u and o
for this distribution, varied slightly for the various thread counts. Histograms
containing data from the experiments conducted for a thread count of 51 are
provided in Fig. 3 for the copy, compute action, and update action. Addition-
ally, the best fitting lognormal distribution is plotted as a continuous curve on
top of the data.
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Figure 3: Histogram of copy (upper left), compute (upper right), and update
(lower middle) times for the case of 51 threads

Aggregate statistics for these experiments—across all the thread and across
the multiple runs of each experiment—-are provided in Table 1. These statistics
can be used to tune the performance of the simulation framework, so that it
provides results indicative of the current state of HPC hardware. In particular,
the input distribution specified in Algorithm 2 can be set to the distribution
that best matches the empirical data discovered.

The effect of increasing the number of threads on the shape of the distribu-
tion is shown in Fig. 4. The table captures the average time required for each

11



of the three main activities that were benchmarked in this implementation.

Table 1: Summary statistics for asynchronous performance tuning showing the
average time to copy data to a thread, compute a relaxation, write the result

back to memory, and the total update time.

Threads | Ave Copy (s) | Ave Comp. (s) | Ave Update (s) | Total (s)
11 1.86E-05 1.86E-02 3.01E-04 | 1.89E-02

21 2.09E-05 1.23E-02 1.53E-04 | 1.25E-02

41 2.89E-05 1.07E-02 8.40E-05 | 1.08E-02

o1 2.96E-05 1.05E-02 7.00E-05 | 1.06E-02

81 7.00E-05 1.10E-02 7.40E-05 | 1.12E-02

101 2.51E-04 1.21E-02 1.02E-04 | 1.25E-02

Similarly, Fig. 4 shows the effects of increasing the thread count by plotting
the probability density function of the distribution that best fit the empirical
data that was captured. In order to help make the plot more readable, his-
tograms of the actual data found are not included (in contrast to what Fig. 3
shows for a fixed thread count), but the probability density functions for all

thread counts are overlayed.
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Figure 4: Effect of increasing the number of threads on copy (upper left), com-
pute (upper right), and update (lower middle) times

The total time each core spends on calculating and storing the updated
values is dominated by the “Compute” time; viewing the data in both Table 1
and in Fig. 4 shows that increasing the number of threads helps decrease the
amount of time taken up to a point. At a saturation level of more than 1
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thread per physical core, both the compute and the total update time begin
to increase again. Before exhausting the cores that are physically available,
increasing the number of threads has the effect of assigning each physical core
fewer components to update which allows the computations to be done more
quickly. The memory read and write activities (e.g. “Copy” and “Update”) are
less predictable with respect to the number of threads utilized, however, given
the implementation used here, they both take orders of magnitude less time
than actually performing the calculation.

4.1.2 Implementation 2

This second implementation performs the Jacobi relaxation on the grid directly
using the neighboring points required by the 5-point stencil as opposed to ex-
plicitly forming the matrix A, and in a sense a implements matriz-free solution.
For this implementation, the Laplacian was discretized over a 500 x 500 grid
with boundary conditions set according to Table 2

Table 2: Boundary conditions for the second implementation of the Laplacian

0 100 ... ... 100 | O
75| XXX ... ... XXX | 50
XXX .o L0 XXX
D XXX Lo Ll XXX :
75 | XXX ... ... XXX | 50
0 o ... ... 0] O

The implementation used here stems from code provided by [HW10]; similar
code solves a three dimensional discretization of the Laplacian in the study fea-
tured in [BBDH11] and [BBDH14]. The routine solves a heat diffusion problem,
in which a two-dimensional heated plate has Dirichlet boundary-condition tem-
peratures. Two matrices, ug and uj, store grid point values that each thread
reads, e.g. from u7, to compute newer values to write, e.g. to ug. As the method
is asynchronous, each thread independently determines which matrix stores its
newer u(*+1)(4, j) values and older u(*) (4, j) values. For an n + 2 by n + 2 grid,
each thread solves for n?/n grid points, such that the grid is evenly divided
along the y-axis. When a thread copies grid point values above or below its do-
main for the computation, OpenMP locks are employed to ensure that data is
captured from a single iteration. Further, locks are used when updating values
on domain boundaries. Each thread p,, computes its local residual value every
k" iteration, which it contributes to the global residual value using an OpenMP
atomic operation, such that it adds the local residual from the current iteration
and subtracts the local residual from the previous iteration. A single thread
checks for convergence with an atomic capture operation, and updates a shared
flag variable if the criterion is satisfied. Pseudocode for this implementation is
provided in Algorithm 4.

In this implementation, data was only collected for the total iteration time
for an individual thread. Thread counts of 10, 25, 50, and 100 were used in this
series of experiments. The average total iteration time for the varying
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Algorithm 4: OpenMP Implementation 2

Input: Initial guess for () (i, j), a number of processing elements p
Output: Solution vector u(4, j)
1 Assign elements u(i, j) to each processing element

2 for t =1,2,... until convergence do

3 for each point in the grid, u™® (i, j) do

4 Copy necessary boundary values for u(*+1) (4, 7)
5 Compute u(*t1) (4, j) =

/4% (uw®DG+1,5) +u®G—1,5) +u®@E,5+1)+u®(i,5—-1)

6 Update ug-t) (,7) in common memory with ug-tﬂ)(i,j)

Table 3: Average iteration time with standard deviation (by thread count).

Threads | Ave Iter. Time (s) | Std. Iter. Time
10 0.6478E-04 0.3154E-05
25 0.3047E-04 0.2277E-05
50 0.2095E-04 0.2848E-05
100 2.2834e-05 5.5648e-06

An example of the iteration times for the case of 10 threads and 50 threads
is given by Fig. 5

x10% Iteration Times, 10 threads %108 Iteration Times, 50 threads
14 T T T T 25

12

® °
o

Probability Density

Probability Density

o
2

0 1 2‘ 3‘ <‘1 é 6 7 O‘.S 1 1.‘5 é 2.‘5 3 3.5 1‘1 4.‘5 é
Observed Times (s) x10™ Observed Times (s) %107
Figure 5: Histogram of iteration times for 10 threads (left) and 50 threads
(right)

Since this implementation is even more compute bound then the first one,
comparing Fig. 6 and Table 3 shows a general decrease in the time for each iter-
ation as the thread count is increased. While there is no inflection point evident
in the data presented in Table 3 (compared to Table 1), Fig. 6 still suggests that
once the number of threads outnumbers the number of available physical cores
that performance gains begin to drop off. For denser matrices, or for different
applications, these trends could change as the memory based activities become
relatively more expensive. The finite difference discretization of the Laplacian
is a very sparse matrix that does not require much data movement.
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Figure 6: Effect of increasing thread count on total iteration time

Implementation Comparison. The first implementation has the relative
disadvantage of requiring an explicit copy operation for each row a thread up-
dates, but generalizes further to any sparse matrix, A, with which the Jacobi
method can be used. From the result given in Theorem 1 this will occur if the
spectral radius of the iteration matrix, C, is less than 1. In the case of the
Jacobi method, the iteration matrix is given by

C=-DYL+U). (20)

Note that in the two dimensional discretization of the Laplacian, the spectral
radius of the Jacobian is less then 1, which says that both the synchronous and
asynchronous variants of the Jacobi algorithm will converge.

The second implementation studied here minimizes the copy portion of the
routine, assuming an appropriate number of processing elements for a given
grid, and thus minimizes a portion of the routine more susceptible to natural
fluctuations in HPC hardware performance. However, this routine only gen-
eralizes to finite difference discretizations of partial differential equations over
rectangular grids.

The point of showing two distinct implementations is to emphasize that the
simulation framework proposed here is capable of being easily tuned to reflect
the performance of varying implementation styles. This simulation framework
can be further adapted to any asynchronous iterative method through the pro-
cess of collecting data representative of individual update times and using the
resultant data to tune the model towards a particular use case.

5 Example of use: developing efficient check-
pointing routines

An example of the efficacy of the simulation framework described in Section 4 is
demonstrated here as to how the simulation may be used to determine efficient
times to checkpoint data while executing an asynchronous iterative method.

5.1 Fault model

For this part of the study, faults are modeled as perturbations similar to several
recent studies [CS16b, CSC17, SW15]; the goal being producing fault tolerant
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algorithms for future computing platforms that are not too dependent on the
precise mechanism of a fault (e.g. bit flip). Modifying the perturbation-based
fault model described in [CSC17], a single data structure is targeted and a
small random perturbation is injected into each component transiently. For
example, if the targeted data structure is a vector x and the maximum size of
the perturbation-based fault is €, then proceed as follows: sample a random
number r; € (—¢, €) using a uniform distribution, and then set

for all values of ¢. The resultant vector & is then perturbed away from the
original vector x. Other similar perturbation-based fault models have sampled
the components r; from different ranges. This can allow the creation of scenarios
where some components are perturbed by large amounts, and some are only
changed incrementally.

In this study, faults are injected into the asynchronous Jacobi algorithm
following the perturbation based methodology described above. Due to the
relatively short execution time of the asynchronous Jacobi algorithm on the
given test problems, a fault is induced only once during each run, and the fault
is designated to occur at a random iteration number before convergence. To
be precise — since “iteration” loses some meaning in an asynchronous iterative
algorithm — the fault is injected on a single simulated time before the algorithm
terminates. It is not necessary for the program to have an update scheduled on
the same simulated time for the fault to be injected.

5.2 Experiments with the Simulation Framework

Similar to the earlier results in the paper, this study covers the solution of the
linear system resulting from a two-dimensional finite difference discretization
of the Laplacian. Before presenting simulation results, it is important to note
that faults, as modeled here, will not prevent the eventual solution of the linear
system using the (asynchronous) Jacobi method. Since the spectral radius of the
associated iteration matrix is strictly less than 1, it will converge for any initial
guess £(©). Since faults are assumed to only affect the memory storing the vector
z and are assumed to occur in a transient manner, if a fault occurs on iteration
F then the subsequent iterate, (¥ can be taken to be the new starting
iterate and eventual convergence is guaranteed due to the iteration matrix which
has remained the same throughout the occurrence of the fault. This model
can reflect the scenario where certain parts of the routine are designated to
run on hardware with a higher reliability threshold, and other parts of the
algorithm are allowed to run on hardware that may be more susceptible to the
occurrence of a fault. This sandbox type design has been suggested as a possible
means for providing energy efficient fault tolerance on future HPC environments
[BFHH12, HH11, SV13].

While eventual convergence may be guaranteed, greatly accelerated conver-
gence is possible through a simple checkpointing scheme. An example of such
a scheme (as an extension of the asynchronous Jacobi simulation provided by
Algorithm 2) is provided in Algorithm 5.

Note that the asynchronous nature of the iterative method means that a
strict check on the decrease of the residual (i.e. expecting monotonic decrease)
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Algorithm 5: Asynchronous Jacobi simulation with checkpointing

Input: a;; € A; initial guess xo; number of processing elements p;
input random number distribution; checkpointing tolerance «;
checkpointing frequency w

Output: Solution vector x

1 Assign processor update times 71,72, ..., 7, by sampling from an
appropriate random number distribution

2 Assign a part of x to each processing element

3 Initialize 7,4 to a large value

4 for t =1,2,..., until convergence do

5 for each processing element, P, do

6 if 7, =t then

7 for each element x; € x assigned to P, do

8 XT; = % ZJ;& AT — bz}

9 Retrieve a new update time 74 by sampling from the input
distribution

10 Inject a fault if appropriate

11 Calculate the residual r,e, as in Eq. (17)

12 if 7pew > a X g then

13 T 4= Tep

14 if mod (t,w) == 0 then

15 Tep & T

16 Check termination conditions

is not possible. In particular, the checkpointing tolerance a needs to be taken
such that o > 1. However, the expected manifestation of faults as rare, transient
events allows « to be taken fairly large. Taking a too large results in a fault
having a substantial impact on the convergence rate of algorithm since large
faults will be allowed to impact the algorithm with no correction. Conversely,
taking a too small causes the algorithm to checkpoint more frequently than
needed. Examples of the effects of a fault with different values selected for «
are given by Fig. 7.

Note in Fig. 7 that no checkpointing results in a delay to convergence relative
to the use of checkpointing with either &« = 1 or @ = 10. The size of the fault
selected in this study, r; € (—100, 100), which may be reflective of an exponent
or sign bit flip [CS18], results in the values & = 1 and a = 10 having the same
performance since the error induced by the fault is sufficiently large that the
new residual is more than o = 10 times the prior residual. Faults that induce
a smaller error may be detected by certain values of a and not by others which
would lead to differing performance.

The residual progress in the plot showing the effects of using o« = 1 can
be explained by the updates provided by certain simulated processing elements
being rejected despite being necessary for the convergence of the algorithm. This
can be seen in the small, momentary jumps in the progression of the residual
visible in the other graphs. These rejections lead to stagnation in the progression
of the algorithm and show why the value of & = 1 should not be selected for a
checkpointing scheme for an asynchronous iterative method.
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Figure 7: Effect of differing values of a on the progression of the residual

6 Conclusions and Future Work

This work has developed a framework that can be used to efficiently simulate the
outcomes of asynchronous methods in heterogeneous computing environments
and in the presence of transient soft faults. Given that asynchronous methods
are notoriously difficult to study theoretically, their simulation is an invaluable
tool for observing their behavior and making quantitative and qualitative as-
sertions as was shown by example in Section 5.2, in which the checkpointing
tolerance a was assessed. The framework is extensible and flexible and is able
to: (1) admit a variety of asynchronous methods, beyond the Jacobi algorithm,
(2) incorporate different fault models, and (3) vary hardware parameters such
as thread and processor counts.

In the future, it is planned to automate the selection of the checkpoint-
ing tolerance as well as checkpointing frequency in the course of simulation.
Furthermore, simulation framework will be augmented with runtime simula-
tion measurements, such those provided by Intel Running Average Power Limit
(RAPL) interface [Guill], to obtain simulated application execution traces in
order to model application performance and energy consumption.

Acknowledgments
This work was supported in part by the Air Force Office of Scientific Research

under the AFOSR award FA9550-12-1-0476, by the U.S. Department of En-
ergy (DOE) Office of Advanced Scientific Computing Research under the grant

18



DE-SC-0016564 and the Exascale Computing Project (ECP) through the Ames
Laboratory, operated by Iowa State University under contract No. DE-AC00-
07CH11358, by the U.S. Department of Defense High Performance Computing
Modernization Program, through a HASI grant, the Turing High Performance
Computing cluster at Old Dominion University, and through the ILIR/IAR pro-
gram at the Naval Surface Warfare Center - Dahlgren Division. The authors
would also like to acknowledge Edmond Chow for discussions regarding simula-
tion of asynchronous iterative processes and the MATLAB script he provided that
evolved into part of the proposed simulation framework.

7 References

[ABO5]

[ABC*06]

[ABC*10a]

[ABC*10b)]

[ACD15]

[ADG15]

[ADQO15]

[ADQO16]

Ahmed Addou and Abdenasser Benahmed. Parallel synchronous
algorithm for nonlinear fixed point problems. International Journal
of Mathematics and Mathematical Sciences, 2005(19):3175-3183,
2005.

K Asanovic, R Bodik, BC Catanzaro, JJ Gebis, P Husbands,
K Keutzer, DA Patterson, WL Plishker, J Shalf, SW Williams,
et al. The landscape of parallel computing research: A view from
Berkeley. Technical report, Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, 2006.

S Ashby, P Beckman, J Chen, P Colella, B Collins, D Crawford,
J Dongarra, D Kothe, R Lusk, P Messina, et al. Ascac subcommit-
tee report: The opportunities and challenges of exascale comput-
ing. Technical report, Technical report, United States Department
of Energy, Fall, 2010.

Steve Ashby, PETE Beckman, Jackie Chen, Phil Colella, BILL
Collins, DONA Crawford, Jack Dongarra, DOUG Kothe, Rusty
Lusk, PAUL Messina, et al. The opportunities and challenges of
exascale computing—summary report of the advanced scientific com-
puting advisory committee (ascac) subcommittee. US Department
of Energy Olffice of Science, 2010.

Hartwig Anzt, Edmond Chow, and Jack Dongarra. Iterative sparse
triangular solves for preconditioning. In European Conference on
Parallel Processing, pages 650—-661. Springer, 2015.

Haim Avron, Alex Druinsky, and Anshul Gupta. Revisiting asyn-
chronous linear solvers: Provable convergence rate through ran-

domization. Journal of the ACM (JACM), 62(6):51, 2015.

Hartwig Anzt, Jack Dongarra, and Enrique S Quintana-Orti. Tun-
ing stationary iterative solvers for fault resilience. In Proceedings
of the 6th Workshop on Latest Advances in Scalable Algorithms for
Large-Scale Systems, page 1. ACM, 2015.

Hartwig Anzt, Jack Dongarra, and Enrique S Quintana-Orti. Fine-
grained bit-flip protection for relaxation methods. Journal of Com-
putational Science, 2016.

19



[ALDH12]

[Anz12]

[Bau78§]

[BBDH11]

[BBDH14]

[Ben07]

[BFHH12)

[BPC*11]

[BTS89)

[CAD15)

[CC16]

[CGG+09]

Hartwig Anzt, Piotr Luszczek, Jack Dongarra, and Vincent Heuve-
line. GPU-accelerated asynchronous error correction for mixed
precision iterative refinement. Furo-Par 2012 Parallel Processing,
pages 908-919, 2012.

Hartwig Anzt. Asynchronous and multiprecision linear solvers-
scalable and fault-tolerant numerics for energy efficient high per-
formance computing. PhD thesis, Karlsruhe, Karlsruher Institut
fiir Technologie (KIT), Diss., 2012, 2012.

Gérard M Baudet. Asynchronous iterative methods for multipro-
cessors. Journal of the ACM (JACM), 25(2):226-244, 1978.

Tain Bethune, J Mark Bull, Nicholas J Dingle, and Nicholas J
Higham. Investigating the Performance of Asynchronous Jacobi’s
Method for Solving Systems of Linear Equations. To appear in In-
ternational Journal of High Performance Computing Applications,
2011.

Tain Bethune, J Mark Bull, Nicholas J Dingle, and Nicholas J
Higham. Performance analysis of asynchronous Jacobis method
implemented in MPI, SHMEM and OpenMP. The International
Journal of High Performance Computing Applications, 28(1):97—
111, 2014.

Abdenasser Benahmed. A convergence result for asynchronous al-
gorithms and applications. Proyecciones (Antofagasta), 26(2):219-
236, 2007.

PG Bridges, KB Ferreira, MA Heroux, and M Hoemmen. Fault-
tolerant linear solvers via selective reliability. arXiv preprint
arXiv:1206.1590, 2012.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan
Eckstein. Distributed optimization and statistical learning via

the alternating direction method of multipliers. Foundations and
Trends®) in Machine Learning, 3(1):1-122, 2011.

Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed
computation: numerical methods, volume 23. Prentice hall Engle-
wood Cliffs, NJ, 1989.

Edmond Chow, Hartwig Anzt, and Jack Dongarra. Asynchronous
iterative algorithm for computing incomplete factorizations on
GPUs. In International Conference on High Performance Com-
puting, pages 1-16. Springer, 2015.

Yun Kuen Cheung and Richard Cole. A unified approach to an-
alyzing asynchronous coordinate descent and tatonnement. arXiv
preprint arXiw:1612.09171, 2016.

Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill
Kramer, and Marc Snir. Toward exascale resilience. The In-
ternational Journal of High Performance Computing Applications,
23(4):374-388, 2009.

20



[CGGT14]

[CIB*17]

[CM69)]

[CP15]

[CS16a]

[CS16b]

[CS17]

[CS18]

[CSC17]

[DHB*14]

[EHM15]

F Cappello, A Geist, W Gropp, S Kale, B Kramer, and M Snir.
Toward exascale resilience: 2014 update. Supercomputing frontiers
and innovations, 1(1), 2014.

Evan Coleman, Aygul Jamal, Marc Baboulin, Amal Khabou, and
Masha Sosonkina. A Comparison and Analysis of Soft-Fault Error
Models using FGMRES and ARMS RBT. In Proceedings of the
12th International Conference on Parallel Processing and Applied
Mathematics. ACM, 2017.

Daniel Chazan and Willard Miranker. Chaotic relaxation. Linear
algebra and its applications, 2(2):199-222, 1969.

Edmond Chow and Aftab Patel. Fine-grained parallel incom-
plete LU factorization. SIAM journal on Scientific Computing,
37(2):C169-C193, 2015.

Evan Coleman and Masha Sosonkina. A Comparison and Analy-
sis of Soft-Fault Error Models using FGMRES. In Proceedings of
the 6th annual Virginia Modeling, Simulation, and Analysis Center
Capstone Conference. Virginia Modeling, Simulation, and Analysis
Center, 2016.

Evan Coleman and Masha Sosonkina. Evaluating a Persistent Soft
Fault Model on Preconditioned Iterative Methods. In Proceedings
of the 22nd annual International Conference on Parallel and Dis-
tributed Processing Techniques and Applications, 2016.

Evan Coleman and Masha Sosonkina. Fault Tolerance for Fine-
Grained Iterative Methods. In Proceedings of the 7th annual Vir-
ginia Modeling, Stmulation, and Analysis Center Capstone Confer-
ence. Virginia Modeling, Simulation, and Analysis Center, 2017.

Evan Coleman and Masha Sosonkina. Self-Stabilizing Fine-Grained
Parallel Incomplete LU Factorization. Sustainable Computing: In-
formatics and Systems, 2018.

Evan Coleman, Masha Sosonkina, and Edmond Chow. Fault Toler-
ant Variants of the Fine-Grained Parallel Incomplete LU Factoriza-
tion. In Proceedings of the 2017 Spring Simulation Multiconference.
Society for Computer Simulation International, 2017.

Jack Dongarra, Jeffrey Hittinger, John Bell, Luis Chacon, Robert
Falgout, Michael Heroux, Paul Hovland, Esmond Ng, Clayton Web-
ster, and Stefan Wild. Applied mathematics research for exascale
computing. Technical report, Lawrence Livermore National Labo-
ratory (LLNL), Livermore, CA, 2014.

J Elliott, M Hoemmen, and F Mueller. A Numerical Soft Fault
Model for Iterative Linear Solvers. In Proceedings of the 24nd Inter-
national Symposium on High-Performance Parallel and Distributed
Computing, 2015.

21



[FS00]

[G#r99)

[GBH14]

[Geill]

[Geil2]

[Geil6]

[GLO9]

[Guill]

[HD13]

[HH11]

[Hon17]

[HW10]

[IBCH13]

[OR00]

Andreas Frommer and Daniel B Szyld. On asynchronous iterations.
Journal of computational and applied mathematics, 123(1):201-216,
2000.

Felix C Gartner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments. ACM Computing Surveys
(CSUR), 31(1):1-26, 1999.

Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. Enabling
highly-scalable remote memory access programming with MPI-3
one sided. Scientific Programming, 22(2):75-91, 2014.

A Geist. What is the monster in the closet? In Invited Talk
at Workshop on Architectures I: Ezxascale and Beyond: Gaps in
Research, Gaps in our Thinking, volume 2, 2011.

A Geist. Exascale monster in the closet. In 2012 IEEE Workshop
on Silicon Errors in Logic—System Effects, Champaign-Urbana, IL,
March, pages 27-28, 2012.

Al Geist. Supercomputing’s monster in the closet. IEEE Spectrum,
53(3):30-35, 2016.

A Geist and R Lucas. Major computer science challenges at exas-
cale. International Journal of High Performance Computing Appli-
cations, 2009.

Part Guide. Intel®) 64 and ia-32 architectures software developers
manual. Volume 3B: System programming Guide, Part, 2, 2011.

James Hook and Nicholas Dingle. Performance analysis of asyn-
chronous parallel jacobi. Numerical Algorithms, pages 1-36, 2013.

M Hoemmen and MA Heroux. Fault-tolerant iterative methods via
selective reliability. In Proceedings of the 2011 International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society, volume 3, page 9. Citeseer,
2011.

Mingyi Hong. A distributed, asynchronous and incremental al-
gorithm for nonconvex optimization: An admm approach. IEEE
Transactions on Control of Network Systems, 2017.

Georg Hager and Gerhard Wellein. Introduction to high perfor-
mance computing for scientists and engineers. CRC Press, 2010.

Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid
Hachem. Asynchronous distributed optimization using a random-
ized alternating direction method of multipliers. In Decision and
Control (CDC), 2018 IEEE 52nd Annual Conference on, pages
3671-3676. IEEE, 2013.

James M Ortega and Werner C Rheinboldt. Iterative solution of
nonlinear equations in several variables. STAM, 2000.

22



[SN11]

[SV13]

[SW15]

[SWA*14]

[Szy98]

[TBAS6]

[VV+09)

[WPC16]

[ZC10]

Kunal Srivastava and Angelia Nedic. Distributed asynchronous con-
strained stochastic optimization. IEFE Journal of Selected Topics
in Signal Processing, 5(4):772-790, 2011.

P Sao and R Vuduc. Self-stabilizing iterative solvers. In Proceed-
ings of the Workshop on Latest Advances in Scalable Algorithms
for Large-Scale Systems, page 4. ACM, 2013.

Miroslav Stoyanov and Clayton Webster. Numerical analysis of
fixed point algorithms in the presence of hardware faults. SIAM
Journal on Scientific Computing, 37(5):C532—C553, 2015.

M Snir, RW Wisniewski, JA Abraham, SV Adve, S Bagchi, P Bal-
aji, J Belak, P Bose, Franck Cappello, B Carlson, et al. Addressing
failures in exascale computing. International Journal of High Per-
formance Computing Applications, 2014.

Daniel B Szyld. Different models of parallel asynchronous iterations
with overlapping blocks. Computational and applied mathematics,
17:101-115, 1998.

John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed
asynchronous deterministic and stochastic gradient optimization al-
gorithms. IEEE transactions on automatic control, 31(9):803-812,
1986.

Sundaresan Venkatasubramanian, Richard W Vuduc, et al. Tuned
and wildly asynchronous stencil kernels for hybrid cpu/gpu systems.
In Proceedings of the 23rd international conference on Supercom-
puting, pages 244-255. ACM, 2009.

Jordi Wolfson-Pou and Edmond Chow. Reducing communication
in distributed asynchronous iterative methods. Procedia Computer
Science, 80:1906-1916, 2016.

Minyi Zhong and Christos G Cassandras. Asynchronous distributed
optimization with event-driven communication. IEEE Transactions
on Automatic Control, 55(12):2735-2750, 2010.

23



	Introduction
	Related work
	Asynchronous iterative methods
	Asynchronous relaxation methods

	Overview of simulation framework
	Tuning the simulation framework
	Implementation 1
	Implementation 2


	Example of use: developing efficient checkpointing routines
	Fault model
	Experiments with the Simulation Framework

	Conclusions and Future Work
	References

