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Abstract

This study seeks to understand the soft error vulnerability of asynchronous iterative methods, with a focus on
stationary iterative solvers such as Jacobi. A theoretical investigation into the performance of the asynchronous
iterative methods is presented and used to motivate several fault recovery methods for asynchronous linear solvers.
The numerical experiments utilize a hybrid-parallel implementation where the computational work is distributed
over multiple nodes using MPI and parallelized on each node using OpenMP, and a series of runs are conducted
to measure both the impact of soft faults and the effectiveness of the recovery methods. Trials are run to compare
two models for simulating the occurrence of a fault as well as techniques for recovering from the effects of a fault.
The results show that the proposed strategies can effectively recover from the impact of a fault and that the numerical
model for simulating soft faults consistently produces fault effects that enable the investigation and tuning of recovery
techniques in action.

1 Introduction
In high performance computing (HPC) environments, it is important to keep in mind the need for developing algo-
rithms that are resilient to faults. On future platforms, the rate at which faults occur is expected to increase dramatically
[12]. Because of this, developing algorithms that are resilient to faults is of paramount importance, especially on the
road towards exascale.

Faults can broadly be divided into two categories: hard faults and soft faults [10]. Hard faults cause immediate
program interruption and typically come from negative effects on the physical hardware components of the system or
on the operating system itself. Soft faults represent all faults that do not cause the executing program to stop, although
its interruption may occur as a result of their impact. Transient soft faults are typically caused by solitary bit flips,
occurring due to such events as, for example, radiation, hardware malfunction, or data-cache set incorrectly. The most
important aspect to recovering from a soft fault is successful fault detection. However, this is often difficult in the case
of a soft fault since, though it corrupts data, it does not cause direct interruption to the flow of the iterative process.
Many detection techniques rely on choosing an appropriate tolerance to check a property of the algorithm that has
predictable behavior (a residual that is monotonically decreasing, a known property concerning a vector or matrix
norm, etc); a tolerance that is too loose will allow potentially harmful errors to go undetected, while a tolerance that is
too strict may report a fault when none actually occurred (“false positive”) and cause the program to do extra work to
recover from a non-existent problem. The balance in choosing the correct fault tolerance method to recover from soft
faults can be application dependent. The focus of this work is on developing recovery methods for transient soft faults
that are specific to asynchronous linear solvers, specifically to stationary linear solvers such as Jacobi.

Asynchronous linear solvers come from a class of parallel iterative algorithms where each computing element is
allowed to perform its task without waiting for updates from any of the other processes. Asynchronous iteration is
often applied to the parallel solution of fixed point problems, whereby a fixed point iteration

xxx(k+1) = G(xxx(k)) (1)

is updated in an asynchronous manner, with the ultimate goal of finding a fixed point, i.e., a location xxx∗ in the domain
such that xxx∗ = G(xxx∗). This class of problems has been used in a wide variety of applications including: the solution
of linear systems [3], the preconditioning of linear solvers [15], optimization [28], and techniques for solving partial
differential equations [25], among many others.

Asynchronous linear solvers tend not to converge to high precision as quickly as their Krylov subspace counterparts
[4]. However, they can converge very quickly to a low level of accuracy. This loss of accuracy may cause the
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use of asynchronous linear solvers to be suboptimal for some applications. But the fact that they are able to reach
an approximate solution quickly opens up several other application areas, such as as preconditioning to a Krylov
subspace solver or big data and machine learning [4]. The amount of computational work done during an asynchronous
iteration can be greater compared to a synchronous solver; however, the smaller cost of synchronization may enable
the asynchronous variant to be faster overall.

The authors’ prior work [16] focused mainly on comparisons of three different fault-injection models. A partial
checkpointing strategy was picked in that work to show experimentally asynchronous-method recovery from faults of
various severity. Building on that experimental study, only two fault-injection models are used here, and the present
work makes the following novel contributions:

• developed theoretical underpinning to the resilient algorithms experimented with in prior work;

• proposed a new algorithm-based approach to fault tolerance that does not rely on any form of checkpointing;

• compared a standard checkpointing approach with the other two fault recovery techniques;

• performed a wide suite of experiments to compare all three recovery techniques considered here;

• investigated their scalability to larger problem sizes and increased computational resources.

The remainder of this paper is organized as follows: Section 2 gives an overview of related studies, Section 3 pro-
vides a review of asynchronous iterative method and discusses an approach to model fault tolerance for asynchronous
fixed point iterations (in Section 3.1). Section 4 presents general theoretical and practical considerations for the de-
velopment of resilient fine-grained algorithms. Sections 5 and 6 deal with fault-recovery techniques in asynchronous
linear solvers and with their implementation followed by numerical experiments, respectively. Section 7 concludes
with a summary and future work outline.

2 Related Work
Asynchronous methods themselves have a long and storied history. The development initially began in earnest in the
late 1960’s and continued into the 1970’s. The paper that started investigation into asynchronous iterative methods
was by [13] and investigated whether the updates when solving a linear system via a relaxation method (e.g., Jacobi)
could occur in a random, uncoordinated manner that they termed “chaotic”. Later, work continued towards further
generalizing results in the seminal work by [6], where a framework for analyzing asynchronous iterative methods was
proposed. The texts [8, 5] provide background on asynchronous iterative methods, while the survey presented in [21]
provides a summary of results circa the year 2000.

Pertinent to the research conducted in this paper is work on termination criteria for asynchronous iterative methods.
Historically, research along these lines arose much earlier (see [7, 30]), and has continued recently with work by [34,
27, 26] who, in addition, analyze the effect of round-off errors on asynchronous iterative methods. More recently, [24]
investigated termination criteria for distributed asynchronous iterative methods similar to the asynchronous iterative
methods tested in this study.

Fault tolerance for iterative methods, both stationary solvers and Krylov subspace solvers, has been studied exten-
sively in recent years, including work specific to asynchronous iterative methods. For example, a fine-grained scheme
for fault tolerance for (possibly asynchronous) stationary iterative solvers was recently proposed [3]; the method de-
veloped therein has many similarities with the algorithm-based fault tolerance check used here, but differs in some
of the details. Analysis of fault tolerance for synchronous fixed point algorithms has been provided by [35]. The
work presented here in Section 3.1 builds upon this analysis by extending it to the case where updates can occur
asynchronously.

Characterization of the effects of the faults on solvers has been conducted by [11] for a variety of Krylov subspace
methods, as well as by [31] for a more detailed analysis of the operations inside of the preconditioned Conjugate
Gradient algorithm. Fault detection for iterative methods in linear algebra has been also studied. Both [14] and [18]
develop detection mechanisms by verifying the orthogonality of the basis generated for the Krylov subspace, and [33]
provide a set of algorithmic techniques for efficient fault detection. Fault tolerance for specific iterative methods has
been investigated in, e.g., the work on FT-GMRES by [10], on S-ABFT-PCG by [32], or on analyzing the sensitivity
of and developing fault detection criteria for the Conjugate Gradient method by [2].
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Numerically modeling the occurrence of soft faults as some form of (possibly non-deterministic) data corruption
as opposed to directly flipping bits inside the data structures of the executing program has gained traction recently. A
general position paper on the efficacy of treating soft faults as numerical corruption has been provided by [19]. Several
numerically based fault models have been utilized in recent studies. These include a fault model that is predicated on
shuffling the components of an important data structure [20] as well as a perturbation based model [35].

3 Framework for Asynchronous Iterations
In fine-grained parallel computation involving linear systems, each component, such as a matrix element or vector
entry, is updated in a manner that does not require specific information from the computations of other components
while the update is being made. This allows for each computing element to act independently from all other computing
elements. Depending on the size of the problem and the computing environment, each computing element may be
responsible for updating a single entry or be assigned a block of multiple components.

There are several ways to define asynchronous iteration mathematically (see the survey by [21]); informally, the
data for each component xi may or may not be updated in the iteration that just occurred. Following standard assump-
tions about the amount of allowable delay on updates for the different components, convergence of many iterative
algorithms is preserved. This will lead to different update patterns for individual component functions, each of which
will be utilizing components that may be updated a different number of times. The convergence of parallel fixed point
iterations is discussed in the literature for both synchronous [1] and asynchronous [21] cases. Note that there exist
many possible combinations of synchronous and asynchronous updates. For example, blocks of components could be
scheduled for updates asynchronously, but the individual component updates could be made in a synchronous manner
inside blocks.

The general mathematical model used throughout this paper comes from [21]. In order to keep the mathematical
model as general as possible, consider a function G : D→ D, where D is a domain that represents a product space
D = D1×D2×·· ·×Dm. The goal is to find a fixed point of the function G inside the domain D. To this end, a fixed
point iteration is performed such that

xxx(k+1) = G(xxx(k)) (2)

and a fixed point is declared if xxx(k+1) ≈ xxx(k). Note that the function G has internal component functions Gi, for each
sub-domain Di in the product space D. In particular, Gi : D→ Di, which gives that for xxx = (x1,x2, . . . ,xm) ∈ D,

xxx = G(xxx) = G(x1,x2, . . . ,xm)

= (G1(xxx),G2(xxx), . . . ,Gm(xxx)) ∈ D. (3)

Further, the assumption is also made that there is some finite number of processing elements P1,P2, . . . ,Pr each of which
is assigned to a block of components B1,B2, . . . ,Bm to update. Note that the number of processing elements r will
typically be significantly smaller than the number of blocks m to update. With these assumptions, the computational
model that defines asynchronous iterative methods can be stated as in Algorithm 1. The computational model presented

Algorithm 1: General Computational Model

1 for each processing element Pl do
2 for i = 1,2, . . . until convergence do
3 Read xxx from memory

4 Compute x(i+1)
j = G j(xxx) for all j ∈ Bl

5 Update x j in memory with x(i+1)
j for all j ∈ Bl

in Algorithm 1 allows for either synchronous or asynchronous computation; it only prescribes that an update has to be
made as an “atomic” operation (in line 5), to prevent possible race conditions. If each processing element Pl is to wait
for the other processors to finish each update, then the model describes a parallel synchronous form of computation.
On the other hand, if no order is established for Pls, then an asynchronous form of computation arises.

To continue formalizing this computational model a few more definitions are necessary. First, set a global iteration
counter k that increases every time any processor reads xxx from common memory. At the end of the work done by
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an individual processor p, the components associated with the block Bp will be updated. The results of a given
iteration can be expressed in a vector, xxx = (xs1(k)

1 ,xs2(k)
2 , . . . ,xsm(k)

m ) where the function sl(k) indicates how many times
a specific component has been updated. Finally, a collection of individual components can be grouped into a set
Ik that contains all the components that were updated on the kth iteration. Given these basic definitions, the three
following conditions, along with the model presented in Algorithm 1, constitute a working mathematical framework
for asynchronous computation.

Definition 1. If the following three conditions hold:

1. si(k)≤ k, i.e., only components that have finished computing are used in the current approximation.

2. limk→∞ si(k) = ∞, i.e., the newest updates for each component are used.

3. |k ∈ N : i ∈ Ik|= ∞, i.e., all components will continue to be updated.

Then, given an initial x(0) ∈ D, the iterative update process defined by

x(k)i =

{
x(k−1)

i , i /∈ Ik

Gi(xxx), i ∈ Ik ,

where the function Gi(xxx) uses the latest updates available, is called an asynchronous iteration.

This mathematical framework allows for obtaining results on fine-grained iterative methods that are either syn-
chronous or asynchronous (although the three conditions given in Definition 1 are unnecessary in the synchronous
case). Then, the iterative updates can be expressed in a possibly asynchronous format using the functions si(k) that
keep track of how many updates have occurred for each individual component as follows:

x(k+1)
1 = G1

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sn(k))
n

)
,

x(k+1)
2 = G2

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sn(k))
n

)
,

x(k+1)
3 = G3

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sn(k))
n

)
, (4)

...

x(k+1)
n = Gn

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sn(k))
n

)
.

The following two examples show how the framework detailed above can be used to express common fixed point
iterations [1]:

Example 1. Synchronous iterations are given by enforcing the additional condition that si(k) = k for all blocks
(subdomains) i and for each iteration k.

Example 2. The Jacobi method is given by letting Ik = {1,2, . . . ,m} for all k, i.e., all components are updated on every
iteration. The synchronous block Gauss-Seidel method can be defined by letting si(k) = k and Ik = {k mod m+1}.

Finally, note that the initial set of conditions required for convergence of a fixed-point iteration stems from the
fundamental Banach Fixed-Point Theorem, stated here for the sake of completeness:

Theorem 1 (Banach Fixed Point Theorem). Assume that the space D is complete with respect to the norm ‖ · ‖. If the
operator G : D→ D satisfies,

‖G(xxx)−G(yyy)‖ ≤ γ‖xxx− yyy‖ (5)

with γ ∈ [0,1) for any xxx,yyy ∈ D, then G is said to be a contraction map with respect to the norm ‖ · ‖ and there is a

unique fixed point xxx∗ ∈ D such that the sequence defined by xxx(k+1) = G
(

xxx(k)
)

, converges to the fixed point xxx∗.

This theorem will be used to help develop resilient algorithms in Section 4.
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3.1 Probabilistic Analysis of the Impact of Soft Fault
The material in this subsection is drawn primarily from [35], and is included to motivate the view of the impact of
a fault adopted throughout this paper. This, in turn, provides a foundation for the detection and recovery strategies
adopted in Section 4 as well as the choice of soft fault model utilized in the numerical experiments detailed in Section 6.

Recall that a soft fault is an error that is undetected by the executing program or the operating system and introduces
silent data corruption into the result of the operation where the fault is incurred. An undetected computing fault
that occurs may end up causing either divergence or stagnation of the iterative algorithm. In order to determine the
conditions for convergence in this case, the possible amount of data corruption must first be quantified. For any
operation G on the vector xxx ∈ D, where G : D→ D, some number of vector components of from the output can be
affected by a fault. Even for a relatively trivial map G, it is often hard to pin down exactly where the error occurs if
the corrupted output is the only location that the fault visibly manifests. Further, the corruption from one component
can spread to other components and such a proliferation often occurs in a non-deterministic manner that depends on
the timing and magnitude of the error in question. In the case of a fault occurring when computing a vector xxx ∈D, the
resultant vector, denoted by x̂ ∈ D, can be expressed as

x̂ = xxx+ x̃ (6)

for some random vector x̃ ∈ D. That is, the vector obtained differs from the vector that would arise in the fault-free
case by some unknown amount that is linked to an unknown probability distribution, where for every operation there
is some positive probability of having a fault occur.

In the work by [35], this probabilistic modeling of faults is done via a two-level probability combination. The
first level indicates whether or not a fault has occurred on a particular iteration k and is represented by a sequence
of discrete Bernoulli parameters ppp = {p1, p2, p3, . . .} signifying that a fault occurred at iteration k. Recall that in the
asynchronous case, the iteration counter is incremented every time that a processor reads the vector

xxx(k) =
(

x(s1(k))
1 ,x(s2(k))

2 , · · · ,x(sm(k))
m

)
(7)

from memory. Since the effect of the fault is represented as a random perturbation x̃ to the value of the iterate
that would have been calculated in a fault-free calculation, it can be modeled as a sequence of unknown probability
distributions PPP = {P1,P2,P3, . . .}, associated with each Bernoulli parameter. This creates a sequence of pairs
(ppp,PPP) =

(
(pi,Pi), i = 1, . . . ,m

)
that are associated with each computational step. Convergence can then be defined

by having an arbitrarily small expected value of the difference between a nominal fault-free run, and the result of a run
where faults occur. This ensures that the final iterate of the execution subject to faults is within some tolerance of the
final iterate in a fault-free case and does not require the same number of iterations till convergence.

The iterative nature of the algorithms being considered offers a natural ability to correct for many faults. For
example, if a fault occurs on the iteration (F−1), then the resultant F th iteration can be written

x̂(F) = G
(

xxx(F−1)
)
+ x̃(F) (8)

x̂(F) = xxx(F)+ x̃(F) (9)

for some unknown perturbation x̃(F). However, as long as x̂(F) ∈ D and x̂(F)
i ∈ Di for all i ∈ {1,2, . . . ,m}, this can be

seen to generate a new sequence that will still converge to the desired fixed point.
Further, the probability of a fault can be limited by assuming a so-called selective reliability [10], in which certain

computations are executed in a faster, but less reliable setting while others are performed in a high reliability mode.
In a selective reliability scenario, it can be assumed that operations executed in high reliability mode have a negligible
chance of soft fault occurrence. This assumption has been utilized in earlier studies [10, 29] to create fault tolerant
algorithms in which certain sections are assumed to complete without faults.

4 Developing Resilient Algorithms
The Banach Fixed-Point Theorem may be used to detect anomalous behavior by monitoring the progression of the
difference between successive iterates. In particular, define a variable to hold the difference on the (k+1)st iterate

δ
(k+1) = ‖xxx(k+1)− xxx(k)‖, (10)
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and if it is known that the fault-free behavior of the algorithm guarantees

δ
(k+1) < γδ

(k) , (11)

a fault can be declared if this condition is violated. Alternatively, for some fixed point algorithms there are residuals
that can be used to judge progress of an algorithm. However, the computation of residuals may be expensive.

In the case of asynchronous iterative methods, creating a global synchronization point every iteration in order to
calculate δ (k+1) is counter-productive, and therefore, a different approach is needed. When G : D→ D is either a
linear or nonlinear operator (see Theorems 4.1 and 4.4 of [21], respectively), convergence is guaranteed by ensuring
that the spectral radius of the operator |G| (if G is linear) or the spectral radius of the Jacobian |G′| (if G is nonlinear)
is less than 1. A sufficient but not necessary condition for convergence of fine-grained iterative methods is given by
the proposed result below.

Theorem 2. Assume that the space D is complete with respect to the norm ‖ · ‖. Let D = D1×D2× ·· ·×Dm. For
xxx = (x1,x2, . . . ,xm), let G : D→ D be expressed as

x(k+1)
1 = G1

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sm(k))
m

)
,

x(k+1)
2 = G2

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sm(k))
m

)
,

x(k+1)
3 = G3

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sm(k))
m

)
, (12)

...

x(k+1)
m = Gn

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sm(k))
m

)
using the framework defined by Algorithm 1 and Definition 1. Let xxx(s(k)) =

(
x(s1(k))

1 ,x(s2(k))
2 ,x(s3(k))

3 , · · · ,x(sm(k))
m

)
. If

each component function Gi : D→Di is a contraction mapping, then the asynchronous fixed-point iteration defined by

xxx(k+1) = G
(

xxx(s(k))
)

=
(

G1

(
xxx(s(k))

)
,G2

(
xxx(s(k))

)
, . . . ,Gm

(
xxx(s(k))

))
(13)

converges to xxx∗, the unique fixed point of G : D→ D.

Proof. Since each Gi is individually contractive, there exists a set of constants {γi}m
i=1 that are all less than 1, such that

‖Gi(xxx)−Gi(yyy)‖ ≤ γi‖xxx− yyy‖ (14)

for all xxx,yyy ∈ Di. Set γ = max
i∈{1,...,m}

γi. Then γ < 1 and

‖Gi(xxx)−Gi(yyy)‖ ≤ γ‖xxx− yyy‖ , (15)

which also gives that
‖G(xxx)−G(yyy)‖ ≤ γ‖xxx− yyy‖ (16)

for all xxx,yyy ∈ D, so that Theorem 1 can be applied to give convergence for the entire iterative procedure.

An implication from Theorem 2 is that, if the separate component functions are individually contractive, then a
check similar to Eq. (11) can be used on each component independently. This would allow the fine-grained asyn-
chronous nature of the algorithm to be preserved without introducing any unnecessary synchronization points. In this
case, define a component-wise difference

δ
(k+1)
i = ‖xxx(k+1)

i − xxx(k)i ‖ , (17)

which are specific to the individual subdomains Di. Then, for fixed point iterations that satisfy the component-wise
contractive property specified in Theorem 2, the following relation holds

δ
(k+1)
i ≤ γiδ

(k)
i , (18)
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and can then be used in the development of a fault-tolerant fine-grained fixed-point algorithm to be employed asyn-
chronously. If δ

(k)
i is computed every iteration, then it can be monitored to see if it increases, may indicate of a fault.

Note that this check will be effective for faults modeled as arbitrary data corruption that may affect any number of
elements as shown in Eq. (6) in Section 3.1. Algorithm 2 presents a fine-grained approach towards fault tolerance that
does not require any explicit recovery technique or global communication.

Algorithm 2: Resilient Parallel Fixed Point Iteration

1 for each processing element Pl do
2 for k = 1,2, . . . until convergence do
3 Compute x(k+1)

j = G j(xxx(k)) for all j ∈ Bl

4 Compute δ
(k+1)
j = ‖x(k+1)

j − x(k)j ‖
5 if δ

(k+1)
j ≤ γ jδ

(k)
j then

6 Accept the update x(k+1)
j

7 else
8 Reject the update x(k+1)

j

In general, asynchronous updates to either component-wise differences or residuals remove the guarantee of mono-
tonicity, even when the progression towards solution is monotonic for all-synchronous updates. Note that the non-
monotonic behavior will depend on the algorithm, problem, and number of processors. As an example of this non-
monotonic behavior, consider the solution of the Laplacian with the Dirichlet boundary conditions, discretized over a
10 by 10 grid with centered finite differences by the asynchronous Jacobi method, shown in Fig. 1. Here, a component
residual is defined by ‖rrr j‖ = ‖bbb j−AAAxxx j‖, where the vector xxx j ∈ D j, and the total of 100 vector components are split
evenly between two processors.
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Figure 1: Convergence of the asynchronous Jacobi method for two simulated processors using both component-wise
differences (left) and component-wise residuals (right) for the Laplacian problem.

Despite the general trend for both solution component differences and component residuals to decrease, it is
possible that Algorithm 2 accepts false positives. Using a threshold parameter γ̃ j > γ j may help prevent false positives.
For example, if γ̃ j� γ j then the check for anomalous behavior

δ
(k+1)
j ≤ γ̃ jδ

(k)
j (19)

can be used to filter excessively bad while small errors, such as bit flips in less significant bits in the mantissa, are
allowed to remain since the iterative nature of the fixed-point algorithm may still lead to convergence. In the case of
γ̃ j� γ j, a single value of γ̃ j may be employed for all subdomains D j, j = 1, . . . ,m.
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There are two additional concerns that merit consideration here. First, if computation of a residual is avoided
entirely, there is a danger of terminating the fixed point iteration too early if only the differences in the solution vector
components are used to determine convergence. Second, a stagnation may take place if too many consecutive iterates
are rejected. One approach to alleviate these difficulties is to introduce a new parameter, α , that controls the frequency
with which the check on progression (see Line 5 of Algorithm 2) is made. In particular, the differences may be
compared every α iterations (see Lines 5 and 7 in Algorithm 3). For each of the differences, the initial value δ

(k0)
j

is set to a sufficiently large value ∆
(0)
j in Line 2. Computing the first update in a highly reliable computational mode

allows this value to be set appropriately, but the algorithm should proceed as expected for any large value since δ
(k0)
j

will be updated every α iterations (Line 11).

Algorithm 3: Enhanced Resilient Parallel Fixed Point Iteration

1 for each processing element Pl do
2 Set δ

(k0)
j = ∆0

j for all j ∈ Bl

3 for k = 1,2, . . . until convergence do
4 Compute x(k+1)

j = G j(xxx(k)) for all j ∈ Bl

5 if mod (k,α)≡ 0 then
6 Compute δ

(k+α)
j = ‖x(k)j − x(k)j ‖

7 if δ
(k+α)
j ≤ γ jδ

(k0)
j then

8 Accept the update x(k+1)
j

9 else
10 Reject the update x(k+1)

j

11 Set δ
(k0)
j = δ

(k+α)
j

For the type of execution shown in Fig. 1, observe that the behavior of the residual components exhibits far less
monotonic behavior than that of the norm of the differences between two successive iterates, which suggests that a
larger value of α may be necessary. In addition, since the progression of solution component differences appears to be
smoother, using them—with an appropriate threshold for γ—rather than component residuals may be more beneficial
to decrease the detection of false positives. Acceptable values for α as well as γ will be explored experimentally in
Section 6.

5 Techniques for Recovery from Soft Faults
Throughout this and subsequent sections, a focus will be on stationary linear solvers, such as Jacobi and Gauss-Seidel,
in order to consider concrete implementations of the theoretical developments discussed in earlier sections. However,
the ideas developed in Section 4 are applicable and may be adapted to any fixed point iteration method of interest in
which a difference (residual) between iterations may be computed and assessed. Generally, the same questions that
arise in striking an efficient balance between computation and resilience when examining the asynchronous Jacobi
algorithm should be expected to arise for any fixed point iteration. As with any fault tolerance techniques, care
needs to be taken to not increase the amount of required computation to a point that the resulting algorithm becomes
unbearably computationally expensive.

The asynchronous Jacobi method is a relaxation method for solving linear systems of the form AAAxxx = bbb, in which
each solution component my be computed separately. Consider the ith row of the matrix A. Then, solving for the ith
component of the solution, xi, gives

xi =
−1
aii

[
∑
j 6=i

ai jx j−bi

]
. (20)

When computed in an iterative manner, successive updates to xi in Eq. (20) may be used as component differences to
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monitor convergence as discussed in Sections 3 and 3.1. Expressing the Jacobi method in a block matrix form gives

xxx =−DDD−1((LLL+UUU)xxx−bbb) (21)

=−DDD−1(LLL+UUU)xxx+DDD−1bbb , (22)

where DDD is the diagonal portion of AAA, and LLL and UUU are the strictly lower and upper triangular portions of AAA respectively.
This gives an iteration matrix CCC =−DDD−1(LLL+UUU), which may be used to define the global function G : D→D discussed
in Sections 3 and 3.1. If the fixed point iteration is asynchronous, an update to every element xi is made with the
most recently updated information available at the update time. Pseudocode for the asynchronous Jacobi algorithm
is provided in Algorithm 4, where it may be observed that a processor Pl (Line 4) is not necessarily available to
compute updates at the given time. This lack of determinism in the update order leads to the asynchronous nature of
the algorithm shown in Algorithm 4.

Algorithm 4: Asynchronous Jacobi

Input: ai j ∈ AAA, initial guess for xxx(0), right-hand side bbb
Output: Solution vector xxx

1 Assign elements xi ∈ xxx to each processing element
2 for t = 1,2, . . . until convergence do
3 for each processor Pl do
4 if Pl is ready to compute updates then
5 for each element xi ∈ xxx assigned to Pl do
6 xi =

−1
aii

[
∑ j 6=i ai jx j−bi

]
7 Calculate the residual ‖bbb−AAAxxx(t)‖
8 Check termination conditions

Next, three techniques for the recovery from faults are discussed followed by an overview of the fault-injection
models that will be used in numerical experiments as described in Section 6. Each technique will be discussed in
relation to the asynchronous Jacobi algorithm provided in Algorithm 4.

5.1 Global Checkpointing
If the global checkpointing (denoted CP) recovery method is used, then during the course of the fixed point iteration,
at periodic intervals, all elements of the current iterate xxx(k) are saved to memory. If a fault is detected, all elements of
the corresponding iterate xxx(F) are reset to the last known good state xxx(k). CP tends to be robust to the occurrence of a
soft fault, but may be very slow computationally. Furthermore, creating reliable techniques for detecting whether or
not a soft fault has occurred often requires regular global communication.

At regular (or semi-regular) intervals during the asynchronous fixed point iteration, the latest information available
can be used to calculate the current residual

rrr = bbb−AAAxxx . (23)

By keeping track of the residual over time, a fault can be declared if

‖rrr(k+α)‖> γ
g‖rrr(k)‖ , (24)

where α is the delay in calculating the residual and γg is a constant selected by the user. Values of γg close to 1 assume
monotonic decrease in the residual and may therefore declare false positives by detecting a non-existent fault, while
values significantly larger than 1 may not detect anomalous behavior if the effect is not sufficiently large. If a fault is
detected all elements of the current iterate xxx(F) are reset to the last known good state.

5.2 Partial Checkpointing
In partial checkpointing (denoted as PCP), all elements of the current iterate xxx(k) are saved to memory with some
regularity, as in the case of global checkpointing. The difference, however, is that if a fault is detected, only some com-
ponents of xxx(F) are reset to their last known good state in PCP. Specifically, only the components that are determined
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to be affected by the fault are rolled back. PCP requires a finer-grained check on whether or not a fault has occurred,
so that the location of the fault can be specified more precisely. Because of this, the partial checkpointing definition
has natural affinity with fine-grained iterative methods: It is possible to detect faults for individual components and act
on them independently (asynchronously); similarly, the computational model of fine-grained (asynchronous) iteration
allows for the components to become out-of-sync with one another. Note that the convergence of a fine-grained itera-
tive method is not typically affected negatively if the components that are assigned to a particular processor are reset
to a state several iterations behind the other components.

As opposed to Eq. (23), where the global residual is calculated, in PCP, only the portion of the residual local to a
processor p

rrrp = (bbb−AAAxxx)p. (25)

is monitored. By monitoring the progression of the local portion of the residual over time, a fault can be declared if

‖rrr(k+α)
p ‖> γ

p‖rrr(k)p ‖ , (26)

where α is the delay in calculating the residual and γ p is a constant selected by the user. The value of γ p may be
significantly higher that that in CP since the decrease of the local residual may not be monotonic. As in CP, values of
γ p close to 1 assume monotonic decrease in the residual and may therefore declare false positives by detecting a non-
existent fault, while values significantly larger than 1 may not detect anomalous behavior if the effect is not sufficiently
large. If a fault is detected, then all of the elements of the current iterate xxx(F) that are assigned to the processor that
detects a fault, i.e., xxx(F)

p , are reset to the last known good iterate.

5.3 Algorithm Based Fault Tolerance
Algorithm based fault tolerance (ABFT) represents a wide class of algorithms that contain a variety of techniques
for making algorithmic modifications to withstand faults without relying on checkpointing techniques necessarily.
Here, a method for restoring the convergence of asynchronous Jacobi without requiring computation of the residual is
provided. Instead, this ABFT variant is based on Algorithm 3 developed in Section 4. At iteration k, the difference in
successive iterates of each component xi is defined as:

δ
(k)
i = |x(k)i − x(k−1)

i |. (27)

Due to the non-monotonicity of the progression, each δ
(k)
i is compared to the maximum δ̂ (k) over all components, and

a fault can be declared if
δ
(k+α)
i > γ

a
δ̂
(k) , (28)

where α is the iteration delay in comparing the differences, and γa is a constant selected by the user. If the check is
failed, the new update to the ith component is rejected. Calculating the maximum value over all components incurs
additional communication overhead, but helps to avoid false-positive fault identification when subdomains exchange
information.

5.4 Fault Injection Techniques
In a majority of studies, the occurrence of an undetected soft fault is treated as a bit flip (see, e.g., [11]). Traditionally,
bit flips are injected randomly according to a given distribution (often, a Poisson or Weibull distribution), or else in a
more frequent manner designed to showcase worst case behavior. However, as the effect of a bit-flip (i.e., the amount
of data corruption introduced) can vary wildly depending on which bit is affected, this necessitates a large number of
runs to reveal statistically average behavior [19]. In this study, a series of experiments utilizing the direct injection of
bit flips into memory is presented; additionally, more generic fault injection techniques are included.

Following the methodology outlined in [19], the numerical fault models used here are inspired by the idea of
modeling an undetected soft fault as data corruption (c.f. Eq. (6) in Section 3.1). That is, instead of trying to model the
exact impact of a fault on future large scale HPC machines, faults are treated as corrupted data where the size of the
corruption can be controlled in an effort to produce consistent worst case behavior and help with the development of
fault tolerant algorithms. The goal of considering a variety of soft-fault models is to produce fault-tolerant algorithms
that are not too dependent on the precise mechanism of a fault, such as a bit-flip, in future computing platforms. Note
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that, in this work, faults are injected only into the data used by the algorithm as opposed to the metadata that includes
also pointers, indices, and other data-structure descriptions, because the metadata, while necessary to be fault-free
also, is tied to a specific implementation of the given algorithm on a given architecture, which is beyond the scope of
this paper.

5.4.1 Bit-Flip Soft Fault Model (BFSFM)

The first method of simulating a fault adopted in this study is via the direct injection of a bit-flip into a data structure.
Soft faults typically, at least for current HPC hardware, manifest as bit-flips, which makes it important to include
analysis that responds to the effects of having a bit-flip occur during the run.

5.4.2 Perturbation-Based Soft Fault Model (PBSFM)

This model treats faults as random perturbations to the faulty subdomain, an approach that has been used in other
recent studies [35, 17]. In the version of the PBSFM used here, a small random perturbation τ that is sampled from
a uniform distribution of a given size is injected transiently into each component representing a value of the targeted
data structure. For example, if the targeted data structure is a vector xxx and the maximum size of the perturbation-based
fault is ε , then proceed as follows:

1. generate a random number τi ∈ (−ε,ε), and

2. set x̂i = xi + τi for all applicable values of i.

The resultant vector x̂ is, thus, perturbed away from the original vector xxx. Note the direct comparison with the arbitrary
data corruption modeled by Eq. (6) in Section 3.1.

5.4.3 Analysis of the Two Fault Injection Models

To compare the potential effects of the fault injection models used here, with an emphasis on the total amount of
data corruption induced, a short analysis is presented for the two dimensional discretization of the Laplacian on the
same domain that will be studied further in Section 6. Letting the initial xxx be a vector of all zeros and the initial
bbb be a vector of all ones, the 50th iterate of xxx examined here, denoted xxx(50), and the the effect of fault models is
examined for this subdomain localized as follows. Consider the first quarter of the components of xxx of which the first
tenth of the components is affected by faults. Note that this localization of sub-domain is motivated primarily by the
implementation details (described in Section 6.2) and does not influence the outcomes of the fault-model behavior.
The PBSFM and BFSM parameters compared are as follows:

• PBSFM– large (L): τi ∈ (−1016,1016), medium (M): τi ∈ (−108,108), and small (S): τi ∈ (−102,102).

• BFSFM– one vector component randomly selected, in which one bit is randomly selected.

A total of 10,000 trials were run, and aggregate data is presented in Table 1. The total amount c of data corruption is
measured as c = ||xxx− x̂||, where x̂ represents the iterate under study

(
xxx(50)

)
with the specified fault injected. Mean and

median information is provided over all the 10,000 trials as well as the average and standard deviation of the logarithm
of c, which provides some insight into the average order of magnitude of corruption and how wide the spread of
potential outcomes is. Note that the range of impacts is wider for the BFSFM, but that the average impact is worse for
the PBSFM.

Table 1: Comparison of fault injection models.

Mean(c) Median (c) Mean(log(c)) Std(log(c))
PBSFM (L) 3.65E+17 3.65E+17 40.44 0.007
PBSFM (M) 3.65E+09 3.65E+09 22.02 0.007
PBSFM (S) 3.65E+03 3.65E+03 8.20 0.007
BFSM 1.13E+304 3.05E-05 -0.81 52.8
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6 Numerical Experiments
Experiments were conducted on the Turing High Performance Computing cluster at Old Dominion University, which
contains 190 standard compute nodes, 10 GPU nodes, 10 Intel Xeon Phi Knight’s Corner nodes, and 4 high memory
nodes, connected with a Fourteen Data Rate (FDR) InfiniBand network. Compute nodes contain 16–32 cores and
128 GB of RAM. Data was collected using 3 regular memory nodes: 2 for computation and 1 for the master process.
Each node contains 2 sockets, each with 10 Intel Xeon E5-2670 v2 2.50 GHz cores. The experiments conducted here
make use of nodes that have 20 cores each. The experiments assign two MPI processes to each node (1 per socket).
The experiments shown in Section 6.4, Section 6.5, and Section 6.6 use 3 nodes (up to 60 cores), while the larger
experiments in Section 6.7 scale from the original 3 nodes up to 33 nodes (660 cores).

6.1 Asynchronous Jacobi Solver for 2D Laplacian
Partial differential equations model systems in which continuous variables, such as temperature or pressure, change
with respect to two or more independent variables, such as time, length, or angle. Poisson’s equation in two dimen-
sions,

∇
2
φφφ =

∂ 2φφφ

∂x2 +
∂ 2φφφ

∂y2 = bbb, (29)

is fundamental for modeling equilibrium and steady state problems, such as incompressible fluid flow or heat transfer.
In this work, the domain is discretized uniformly with each grid point a distance of 1 apart. This allows the partial
differential equation to be discretized via finite-differences, for example, as follows:(

∇
2 f
)
(x,y) = f (x−1,y)+ f (x+1,y)+ f (x,y−1)

+ f (x,y+1)−4 f (x,y) , (30)

which represents a two-dimensional discrete Laplacian operator using a five-point stencil. A special case of the Jacobi
algorithm

vk+1
l,m =

1
4

(
vk

l+1,m + vk
l−1,m + vk

l,m+1 + vk
l,m−1

)
(31)

may be applied to solve a two-dimensional sparse linear system of equations on this regular grid. The numerical
examples in this work use the asynchronous Jacobi algorithm (see Algorithm 4) to solve a two-dimensional finite-
difference discretization of the Laplacian with Dirichlet boundary conditions.

6.2 Implementation Details of Hybrid Parallel Jacobi Solver
This asynchronous Jacobi implementation makes use of hybrid MPI-OpenMP parallelism. This implementation fo-
cuses on solving a two dimensional finite-difference discretization of the Laplacian on a 400×400 grid; including the
boundary values the total problem size is 402× 402. The problem is solved by a matrix-free implementation of the
Jacobi algorithm whereby the approximate solution to the Laplacian is stored in place at the appropriate grid values.
The work is divided among five MPI processes, but only four perform computations. One MPI process acts as a
master process, which communicates with workers for memory transfer and global residual calculations. Each of the
four worker processes is assigned an equal amount of the entire domain, which leads to each subdomain consisting
of 200× 200 grid points. Note that the working size of each subdomain grid will be 202× 202 due to keeping track
of the necessary halo values (i.e., a mixture of values from the boundary and neighboring subdomains). The work is
parallelized inside each subdomain using OpenMP.

For an n by n grid that is equally divided among the np threads, each thread solves for n2/np grid points, such
that the grid is evenly partitioned along the y-axis. Ten OpenMP threads were used for each MPI process, which gives
each thread 200×20 = 4000 vector components to compute updates for. Internally, two matrices U0 and U1 store the
grid point values that each thread reads. As the method is asynchronous, each thread independently determines which
matrix stores its newly updated vector components. Further, locks are used when updating values on boundary rows
and subdomain halos, and when copying subdomain boundaries. Each thread pn computes its local residual value
every kth iteration, which it contributes to the set of residual values for the subdomain. Using an OpenMP atomic
operation, a single thread copies the set of subdomain residuals, computes a sum, and sends the sum to the master MPI
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process. The subdomain is equally divided among all OpenMP threads, but in order to avoid a negative effect on the
performance of a single OpenMP thread, communication with the master MPI process is rotated among the threads as
was investigated in [22].

6.3 Implementation Details of Recovery Methods
Global checkpointing provides a de facto standard with which to compare the other checkpointing methods. In these
experiments, the values for γg that were used ranged from 2.5 to 100. The value of α , representing the delay in how
frequently that progress of residual was checked, was set to 4. The value of 4 was chosen after initial experiments
suggested it offered a good compromise between performance and resilience. Further optimizing this parameter for
both the global checkpoining and partial checkpointing methods is left as future work.

Partial checkpointing, which is based on the progression of the residual after it is recovered from all components
of xxx(k), necessitates communication among all the OpenMP threads as well as all the MPI processes. It checkpoints
only based on the local portion of the residual, denoted rrrl . As the asynchronous computation progresses, each thread
writes periodically the current value of the components xxxl for checkpointing which it is responsible. The periodicity,
α , can treated as a parameter, and in these experiments – similar to those with global checkpointing, it is set to 4.
After the thread updates its components in the kth iteration xxx(k)l , it checks the current local residual to see if a fault has
occurred:

‖rrr(k)l ‖> γ
p‖rrr(k+α)

l ‖, (32)

where γ p > 1 is the checkpoint threshold, rrr(k)l and rrr(k+α)
l are local residuals for the iterations k and k+α , respectively.

The values of γ p used in this study ranged from 1.01 to 1.25. At the end of an iteration, a thread compares the current
component residual value to a previous value. If a fault is detected as an increase of the residual by more than the
specified γ p, the threads that detected the increase roll all of the components present in their subdomain back to the
last checkpoint and continue calculating updates as before. A thread checkpoints after completing four iterations that
do not require a rollback.

The algorithm-based fault tolerance (ABFT) approach attempts to define an efficient solution for fault tolerance
that may scale better due to avoiding regular computation of residuals. In this implementation, the residual is still
calculated periodically in order to determine convergence. Developing convergence criteria based upon other means
is left as future work. Here, the periodicity with which the residual is calculated is changed dynamically; starting once
every 10,000 iterations and increasing to every five iterations as the computation nears completion. In particular, the
frequency α is determined as:

α = 10blog10(rp(1/t2))c , (33)

where r is the current residual, p is the number of MPI processes, and t is the desired tolerance to solve for. The
implementation used here puts an absolute max of 10,000 as well as a minimum value of 5. The component differences
are checked at every iteration, creating an accept/reject criteria for each new update. The values of γa ranges from 1.05
to 5. Initially, the maximum allowable difference is set globally to a problem dependent value. Here, the value is set
to 100, which was the largest value on the grid. As the calculation progresses, this maximum allowable difference is
updated by the communicating thread that is responsible for sharing the residual value at the dynamic period described
above.

For a grid point in the ABFT approach, if the new difference, i.e., the difference between the current value and the
update as computed according to the stencil, is less than or equal to γ times the global maximum difference, the point
updates. Otherwise, if the grid point has failed to update within the last four iterations, the grid point rolls back to
the checkpoint value. However, if the point fails to update after five iterations, the point is forced to update, as much
as γ times the global maximum difference permits. That is, if the computed difference for a grid point is greater than
the global maximum difference times γ , the point will update according to the current value plus the global maximum
difference times γ .

6.4 Baseline Results
Before delving into the results regarding the impact and recovery of soft faults on the hybrid parallel iterative solver
used here, a set of baseline runs is presented. The problem described in Sections 6.1 and 6.2 is solved 500 times and
run times are captured via calls to MPI Wtime(). A histogram showing the distribution of total run times, mean, and
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Figure 2: Distribution of run times in a fault-free environment.
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Figure 3: Effect of bit-flip faults in the exponent and sign bits for the three injection points (Early, Middle, and Late).

standard deviation is presented in Fig. 2. Some variation in run time is observed, but this is not unexpected for an
asynchronous solver. A wide variation in iterations until convergence is also seen in [9], and [23] shows increased run
time variation for asynchronous solvers. Here, the run time for +3 standard deviations is 1.31x the minimum run time.
Almost 98% of runs are less than +3 standard deviations.

6.5 Impact of Soft Faults
The following perturbation τ values were taken from a set of intervals (−102 j,102 j) for j = 1, . . . ,8. Based on the
mean runtime of 2.97s, shown in Fig. 2, three different fault injection points were used as follows: early, which is
equal to 0.1s; middle, which is equal to 1.2s, and late, which is at 2.5s. Figures 3 to 5 show the effects from faults
injected by each model at early, middle, and late time points. In addition, the effects of bit flips restricted to sign or
exponent are distinguished from those restricted to mantissa in separate plots Fig. 3 and Fig. 4, respectively. Each
experiment was replicated seven times on Turing. The plots show the results from the fastest, slowest, and average of
these seven runs. In all experiments, the solver converged to a solution, with a relative residual reduction of t = 10−7.

Figure 3 shows that flipping an exponent bit early in the run, when grid point values may still be small, might not
be as deleterious as a later bit flip. In general, across all the fault models, faults injected early tend to have more of
an effect on the total time for the solve to complete. Note also that, while bit-flip faults in the exponent and sign bits
can have a catastrophic effect, bit flips occurring in the mantissa have very little impact on the performance of the
solver (cf. Fig. 2). On the other hand, the PBSFM more consistently forces bad behavior. This reinforces the analysis
presented Section 5.4.3 (see Table 1): A numerical soft-fault model can more effectively force an algorithm to run
through bad behavior, while a stochastic bit-flip injection may either force an extreme behavior or have little effect.
Numerical soft fault models afford users a higher level of control when investigating fault tolerance.
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Figure 4: Effect of bit-flip faults in the mantissa bits for the three injection points (Early, Middle, and Late).
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Figure 5: Effect of faults injected using the PBSFM for the three injection points (Early, Middle, and Late).
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6.6 Recovery from Soft Faults
For each test, the same desired tolerance was achieved at completion, and the same magnitude of error was inserted.
The small, medium, and large values of γ for each respective fault tolerance method arise from trying to strike a
balance between computational overhead and ability to provide resilience. Because each of the three methods operates
via different mechanisms, the threshold values also differ for each. However, these values were chosen to offer fair
comparisons across all three methods for the same level of resilience. Specifically, for the global checkpointing
method, the values of γg are selected as 5, 10, and 100. The values of γ p for the partial checkpointing method are 1.01,
1.05, and 1.25 to test for very, moderate, and least sensitive fault detection, respectively. Lastly, the values of γa used
for the ABFT are 1.05, 1.25, and 2.5. All three sets of values are representative of the spectrum of values that were
tested for the corresponding methods. Larger values of γg are used for the global checkpointing scheme are needed
since a rollback affects far more components and takes a correspondingly larger amount of time. For ABFT, the goal
is only to exclude large faults and to let the algorithm progress naturally through smaller errors.

If corrupted values are on the edge of a thread compute region, they may spread to the compute region of a
neighboring thread and compromise resiliency. This behavior is more readily observed when using numerical soft
fault models, such as PBSFM, since they impact all of the components assigned to the thread, including boundary
values. Hence, a trade-off between the sensitivity of the fault-detection and checkpointing overhead is desirable. For
example, compare plots for the middle values of their respective γ’s for all recovery methods in Fig. 8 with the ones
for smaller and larger γ values, respectively. Fault recovery mechanisms in some cases are able to correct PBSFM
faults, depending on the circumstances of the run, i.e., if a given thread is able to detect the fault and roll back before
adjacent threads copy bad values to their compute regions. Successful and failing recovery outcomes are shown in
Fig. 8, where the fastest runs indicate successful recovery and the slowest runs correspond to recovery failure.

Figure 6, compared with Fig. 3, shows that the different recovery techniques employed for this work effectively
managed the exponent bit-flip fault injections. Comparing Fig. 7 with Fig. 4 yields little difference—as expected since
bit flips in less significant bits are not expected to induce a large negative impact on the solver—while attesting to
the overhead of the respective recovery methods. In particular, the largest mean time is ∼3.5s in Fig. 7 while the
largest mean time for partial checkpointing, global checkpointing, and ABFT are ∼3.8s, ∼3.2s, and ∼3.4s at their
corresponding least sensitive γ values, as seen in Figs. 7c, 7f and 7i, respectively.

Comparing the different fault recovery methods across all the fault injection methods (Figs. 6 to 8) shows that they
all are able to rectify the effects of a fault almost equally well. Overall, the partial checkpointing method tended to
be the most robust. The ABFT method performs very well for large faults, such as those induced by the PBSFM.
Specifically, Fig. 8 shows that the ABFT is able to keep the overhead of fault tolerance very low even when the size
of the perturbation is large. Comparing Figs. 8c, 8f and 8i shows that even for the less strict values of γ , the ABFT
technique is able to control the overhead associated with recovery.

In general, a trade-off between the sensitivity of the fault-detection and checkpointing overhead is desirable. For
example, in Fig. 8 for each recovery method, compare the middle plots with those for smaller and larger γ values.
Both successful and failing recovery outcomes may be observed in Fig. 8, such that the fastest runs indicate successful
recovery and the slowest runs correspond to possible recovery failure. The solution timing results for the middle values
of γ across all the recovery methods are significantly better than those for less or more sensitive γ’s.

6.7 Scaling to Larger Problems
The experiments presented here focus on the scalability of all three methods to larger total problem sizes with the
increase in the total node count while keeping the subdomain size fixed at 200× 200 and the number of threads per
subdomain at 10. Hence, to increase the problem size, the number of subdomains was increased from 2× 2 up to
8× 8, resulting in a grid size growing from 400× 400 to 1,600× 1,600. Each subdomain was assigned to an MPI
process. Each problem was solved with the tolerance t = 10−7 to match the relative residual reduction from the earlier
experiments.

Note a few small differences between the recovery method variants tested here as compared to the ones tested
before. Firstly, slightly different values of γ are used for all three methods, which were experimentally determined to be
acceptable thresholds on these large-scale runs. The modified γ’s remain, as before, representative of the early, middle,
and late termination ranges. Secondly, in the ABFT method here, the dynamically scheduled residual computation (see
Eq. (33)) is replaced with a regularly scheduled residual computation every 1,000 iterations since the dynamic update
formula caused excessive overhead for the largest problem sizes. Investigating improvements to this dynamic update
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Figure 6: Effect of recovery methods with bit-flip faults in the exponent and sign bits for partial checkpointing Figs. 6a
to 6c, global checkpointing Figs. 6d to 6f, and ABFT Figs. 6g to 6i.
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Figure 7: Effect of recovery methods with bit-flip faults in the mantissa bits for partial checkpointing Figs. 7a to 7c,
global checkpointing Figs. 7d to 7f, and ABFT Figs. 7g to 7i.
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Figure 8: Effect of fault recovery with the PBSFM for partial checkpointing Figs. 8a to 8c, global checkpointing
Figs. 8d to 8f, and ABFT Figs. 8g to 8i.
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procedure to allow for efficient computation of residual information in the fine-grained ABFT method is left as future
work. A series of experiments were conducted using only the PBSFM in order to examine scalability with the focus
on faults having a severe impact that is difficult to correct (as noticed in Section 6.6). The range for τi ∈ (−1010,1010)
was chosen to be between the medium and large values used earlier in order to ensure a repeatable severe effect.

Each recovery method was run seven times in each configuration: baseline, with faults plus recovery, and without
faults but with inserted recovery mechanism, except for the ABFT method which lacks a distinct baseline configuration
because the implementation used always performs an accept/reject check on each new update. Figure 9 shows the data
from these experiments. Each point on the curve is an average of the seven trials, and in the Fault+Recovery (see
the red markers) an x is placed to represent the time for each trial, which can differ significantly due to the PBSFM
utilization. Note that, in the ABFT experiment, there is often a single slower outlier. Also, the average final computed
residual (among all trials) is shown as blue labels next to the points on the curves. The infrequent computation of the
termination condition in the ABFT method tends to lead to solutions with smaller final residuals.

The subplots for PCP and CP in Fig. 9 (the top two rows of figures, respectively) show the overhead of adding the
fault recovery mechanisms (curve Recovery) to the code in the case of a fault-free (curve Baseline) configuration
as well as the overhead incurred when a fault is injected (curve Fault+Recovery). PCP runs consistently slower with
Fault+Recovery, compared with Baseline and Recovery, likely due to the inability of PCP to contain faults affect-
ing boundary grid points: as was seen with the smaller-scale experiments (Section 6.6), corrupted values proliferate
between subdomains. It is worth noting that the PBSFM fault model (with large random perturbations) used in this
subsection represents a pessimistic few of the potential data corruption that will be caused by a fault, and fault detec-
tion mechanisms will often detect spurious faults before they can impact all boundary grid points. Injecting solitary bit
flips would likely reduce the difference between the Recovery and Fault+Recovery curves in Figs. 9a to 9c. PCP,
otherwise, generates predictable, consistent results despite this present shortcoming and also appears to be robust for
larger problems.

CP shows a strong similarity between Recovery and Fault+Recovery runs, indicating that it is effective in con-
taining faults affecting border grid points. The overhead from fault detection and correction is seen when comparing
with Baseline runs. ABFT (see Figs. 9g to 9i) scales more linearly with the increase in problem sizes and computa-
tional resources compared with either PCP or CP in the Fault+Recovery cases, even though ABFT sometimes fails to
recover from the perturbation fault quickly as indicated by the x outliers in Figs. 9g to 9i. In general, although all three
recovery techniques were able to successfully mitigate the impact of a fault in the scalability testing, the increasing
overhead for PCP and CP made them less scalable than ABFT. Table 2 shows average iteration numbers for various grid
sizes, which correspond to the points on the curves in Fig. 9. Analyzing the residual progression for all runs using
ABFT show remarkably consistent behavior across all trials, whereas the experiments using CP tended to progress based
on the value of γ , and the experiments with PCP are grouped by run type.

7 Summary and Future Directions
In this paper, fault tolerance strategies for asynchronous linear solvers are investigated both from theoretical and
practical viewpoints. In particular, the former provided rationale and background for the proposed fault-tolerance
techniques and models. The latter included an experimental study on how the bit-flip and perturbation-based soft fault
models affect asynchronous linear solver implementations and on the ability of the proposed techniques to recover.
Results were presented for a hybrid MPI-OpenMP parallel implementation of the Jacobi method. They demonstrated
that the three recovery techniques considered here may all successfully deal with faults, albeit with varying degrees
of overhead, across increasing problem sizes. This overhead may be controlled to some extent by specifying the
proposed parameters for each recovery method, as discussed in this paper. Furthermore, the proposed algorithm-based
fault tolerance technique appears to be the most scalable of the three by exhibiting a linear increase in the solution
time with the growth in the problem size and computational resources used.

In the future, several research directions may prove beneficial: fine-tuning fault-recovery implementations to ac-
count better for problem partitioning into subdomains, considering the impact of different parallel implementations,
conducting similar experiments on a larger problem set containing a broader suite of problems, and investigating im-
proved methods for terminating asynchronous iterations – specifically fine-grained approaches to fault tolerance for
asynchronous methods. It would also be helpful to extend the testing to a larger suite of algorithms, such as randomized
Gauss-Seidel [4] and parallel Southwell [36].

20



400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

1.9e-08

5.6e-08
8.4e-08

1.2e-07

8.7e-08

1.1e-07

1.1e-07Baseline
Recovery
Fault+Recovery

(a) γ p = 1.05

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

1.9e-08

5.7e-08
8.3e-08

1.2e-07

7.6e-08

1.2e-07

1.1e-07Baseline
Recovery
Fault+Recovery

(b) γ p = 1.25

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

1.9e-08

5.7e-08

8.4e-08

1.2e-07

7.6e-08

1.2e-07

1.1e-07
Baseline
Recovery
Fault+Recovery

(c) γ p = 1.5

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

2.0e-08 5.4e-08
9.3e-08

1.0e-07

1.1e-07

1.1e-07

1.2e-07

Baseline
Recovery
Fault+Recovery

(d) γg = 10

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

1.9e-08 5.3e-08
8.7e-08

1.2e-07

1.0e-07
1.3e-07

1.1e-07

Baseline
Recovery
Fault+Recovery

(e) γg = 100

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)
1.9e-08 5.4e-08

8.8e-08
1.3e-07

9.7e-08
1.3e-07

1.1e-07

Baseline
Recovery
Fault+Recovery

(f) γg = 1000

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

4.0e-08

8.3e-08
8.4e-08

9.8e-08

1.1e-07
1.1e-07

1.1e-07

Recovery
Fault+Recovery

(g) γa = 1.25

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

5.3e-08
8.1e-08

9.5e-08

9.9e-08

1.0e-07
1.1e-07

1.2e-07

Recovery
Fault+Recovery

(h) γa = 2.5

400 600 800 1000 1200 1400 1600

Grid Size

0

50

100

150

200

T
im

e 
(s

)

5.0e-08
6.7e-08

1.0e-07

1.0e-07

9.9e-08

1.3e-07

1.0e-07

Recovery
Fault+Recovery

(i) γa = 5.0

Figure 9: Scalability of recovery methods as the problem size is increased for partial checkpointing Figs. 9a to 9c,
global checkpointing Figs. 9d to 9f, and ABFT Figs. 9g to 9i. Individual times are marked with a red x for each
fault+recovery run. Blue text shows the average final residual for all trials of that size.
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Table 2: Average Iteration Numbers to Convergence for Each Recovery Method and Increasing Grid Sizes.

Grid Size n 400 600 800 1000 1200 1400 1600

Method Gamma Run Type
PCP 1.05 baseline 2.312E+05 4.513E+05 7.312E+05 1.088E+06 1.678E+06 2.304E+06 3.457E+06

recovery 3.504E+05 5.816E+05 8.579E+05 1.206E+06 1.857E+06 2.649E+06 4.111E+06
fault+recovery 4.159E+05 1.279E+06 1.858E+06 2.708E+06 4.104E+06 5.746E+06 8.604E+06

1.25 baseline 2.312E+05 4.510E+05 7.304E+05 1.073E+06 1.673E+06 2.309E+06 3.395E+06
recovery 3.263E+05 5.410E+05 8.218E+05 1.160E+06 1.807E+06 2.511E+06 4.040E+06
fault+recovery 4.700E+05 1.268E+06 1.808E+06 2.636E+06 4.078E+06 5.343E+06 8.622E+06

1.5 baseline 2.316E+05 4.515E+05 7.310E+05 1.071E+06 1.673E+06 2.298E+06 3.322E+06
recovery 3.017E+05 5.127E+05 7.879E+05 1.119E+06 1.753E+06 2.468E+06 3.786E+06
fault+recovery 4.011E+05 1.038E+06 1.676E+06 2.539E+06 3.973E+06 5.149E+06 8.266E+06

CP 10 baseline 2.316E+05 4.516E+05 7.319E+05 1.073E+06 1.674E+06 2.312E+06 3.439E+06
recovery 2.383E+05 4.504E+05 7.322E+05 1.149E+06 1.702E+06 2.552E+06 4.036E+06
fault+recovery 2.309E+05 4.511E+05 7.313E+05 1.149E+06 1.674E+06 2.505E+06 3.844E+06

100 baseline 2.317E+05 4.506E+05 7.302E+05 1.070E+06 1.677E+06 2.300E+06 3.421E+06
recovery 2.579E+05 4.492E+05 7.752E+05 1.102E+06 1.660E+06 2.336E+06 3.321E+06
fault+recovery 2.580E+05 4.489E+05 8.362E+05 1.199E+06 1.941E+06 2.273E+06 3.432E+06

1000 baseline 2.311E+05 4.506E+05 7.304E+05 1.071E+06 1.672E+06 2.358E+06 3.436E+06
recovery 2.302E+05 4.487E+05 7.282E+05 1.067E+06 1.675E+06 2.250E+06 3.383E+06
fault+recovery 2.306E+05 4.588E+05 7.278E+05 1.066E+06 1.673E+06 2.275E+06 3.853E+06

ABFT 1.25 recovery 3.048E+05 5.987E+05 1.008E+06 1.537E+06 2.217E+06 2.882E+06 3.688E+06
fault+recovery 2.967E+05 8.242E+05 1.008E+06 1.514E+06 2.595E+06 2.897E+06 3.701E+06

2.5 recovery 2.760E+05 5.656E+05 9.869E+05 1.497E+06 2.195E+06 2.880E+06 3.631E+06
fault+recovery 2.622E+05 5.817E+05 1.146E+06 1.739E+06 2.562E+06 2.881E+06 3.627E+06

5 recovery 2.815E+05 5.759E+05 9.790E+05 1.495E+06 2.203E+06 2.844E+06 3.686E+06
fault+recovery 2.702E+05 5.930E+05 9.741E+05 1.494E+06 2.215E+06 2.789E+06 3.701E+06
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