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ABSTRACT

Asynchronous iterative methods present a mechanism to improve the performance of parallel algorithms for
highly parallel computational platforms by removing the overhead associated with synchronization among
computing elements. This paper considers a class of asynchronous iterative linear system solvers that em-
ploy randomization to determine the component update orders, and specifically focusing on the effects of
non-uniform distributions. Results show that using distributions favoring the selection of components with a
larger residual may lead to a faster convergence than that when selecting uniformly. In particular, in the best
case of parameter choices, average times for the normal and exponential distributions were, respectively,
13.3% and 17.3% better than the performance with a uniform distribution.
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1 INTRODUCTION

Asynchronous iterative methods describe a class of parallel iterative algorithms where each computing el-
ement is allowed to perform its task without waiting for updates from any of the other processes. Asyn-
chronous iteration is often applied to the parallel solution of fixed point problems, whereby a fixed point
iteration, x*t1) = G(x®), is updated in an asynchronous manner. This class of problems has been used in
a wide variety of applications including: the solution of linear systems (Recht, Re, Wright, and Niu 2011),
the preconditioning of linear solvers (Chow and Patel 2015), optimization (Srivastava and Nedic 2011), and
techniques for solving partial differential equations (Magoules, Szyld, and Venet 2015), among many others.

Asynchronous linear solvers tend not to converge to high precision as quickly as their Krylov subspace
counterparts, however they can converge very quickly to a low level of accuracy (Avron, Druinsky, and
Gupta 2015). This loss of accuracy may cause the use of asynchronous linear solvers to be suboptimal
for some applications, but the fact that they are able to reach an approximate solution quickly opens up
several other application areas. For example, possible use cases include using the asynchronous linear
solver as a preconditioner to a traditional Krylov subspace solver, to solve systems that only require lower
accuracy solutions (e.g. big data, machine learning, etc), or else as a smoother to multigrid methods. One
approach to potentially improving the performance of asynchronous linear solvers is to have each processor
select randomly the (block of) components it updates next, as opposed fixing a priori an update order. This
approach has been studied previously for the case where the random selection is done uniformly (Strikwerda
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2002, Avron, Druinsky, and Gupta 2015). The main contribution of this work is to investigate the potential
performance of randomly selecting the next component to update using a non-uniform distribution. This is
motivated in part by weighted stationary solvers, such as the Southwell iteration, which are typically able to
converge in fewer iterations than traditional Jacobi or Gauss-Seidel relaxation schemes.

1.1 Related Work

The more recent studies dedicated to this field tend to be related to the goal of removing the synchronization
delay from high performance computing clusters that are comprised of heterogeneous components (e.g.
systems that make use of co-processors/accelerators). Examples of this work include in-depth analysis from
the perspective of utilizing a system with a co-processor (Avron, Druinsky, and Gupta 2015). Randomized
linear algebra routines have found use in a variety of different area including transforming linear systems
to aid in the performance of direct solvers (Parker 1995, Baboulin, Li, and Rouet 2014), improving the
performance of hybrid CPU-GPU preconditioners (Jamal, Baboulin, Khabou, and Sosonkina 2016), and
in improving the performance of asynchronous linear solvers (Avron, Druinsky, and Gupta 2015), among
many others. Randomized linear relaxation based solvers have been studied in the past (Strikwerda 2002),
and convergence bounds in the case of uniform selection of which component to update have been developed
more recently (Avron, Druinsky, and Gupta 2015). These convergence bounds were based around work done
for randomized Gauss-Seidel solvers (Leventhal and Lewis 2010, Griebel and Oswald 2012). Additionally,
randomized optimization routines have been utilized as well, e.g., (Srivastava and Nedic 2011), and these
methods utilize many of the same principles and analysis techniques as randomized linear solvers.

The structure of the rest of the paper is as follows: Section 2 overviews asynchronous iterative methods while
Section 3 discusses their randomized counterparts and proposes variations of the randomization procedure,
Section 4 provides numerical results, and finally Section 5 concludes.

2 OVERVIEW OF ASYNCHRONOUS COMPUTATION

In asynchronous computation, each part of the problem is updated such that no information from other parts
is needed while each individual computation is performed. This allows each processor to act independently.
The model that is shown here to provide a basis for asynchronous computation comes mainly from (Frommer
and Szyld 2000). To start, consider a fixed point iteration with the function, G : D — D. Given a finite number
of processors Pj,P,...,P, each assigned to a block B of components By,B;,...,B,, the computational
model can be stated in Algorithm 1. If each processors (P;) waits for the other processors to finish each

Algorithm 1: General Computational Model

1 for each processing element P, do

2 fori=1,2,... until convergence do

3 Read x from common memory

4 Compute xz-“ = Gj(x) forall j € % .

5 Update x; in common memory with x’jJrl forall j € %

update, then the model describes a parallel synchronous form of computation. If no order is established for
the processors, then the computation is asynchronous.

At the end of an update by processor p, the components associated with the block B, will be updated.

This results in a vector, x = (x}' ®) 7x§2(k), e ,xf;,"(k)) where s;(k) indicates how many times component / has

been updated, and k is a global iteration counter. A set of indices I* contains the components that were
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updated on the k" iteration. Given these definitions, the three following conditions provide a framework for
asynchronous computation:

Definition 1. If the following three conditions hold:

1. si(k) <k—1, i.e., only components that have finished computing are used in the current approxima-
tion.

2. lim_es5i(k) = oo, i.e., the newest updates for each component are used.

3. |keN:i€ I¥| =, i.e., all components will continue to be updated.

Then given an initial x° € D, the iterative update process defined by,

(k) _ {xl(k—l) l %]k

X:
Gi(xM) eIk

1
where the individual functions G;(X) use the latest updates available, is called an asynchronous iteration.

Relaxation methods are typically used to solve linear systems of the form Ax = b and can be expressed as
fixed point iterations of the form
F=cxf 44, (1)

where C is the n X n iteration matrix, x is an n-dimensional vector that represents the solution, and d is
another n-dimensional vector that can be used to help define the particular problem at hand. The Jacobi
method is a relaxation method that can be used in an asynchronous manner and the update for a given
component x; can be expressed as

-1
Xj—= — Zaijxj—bi . (2)
it |

This iteration can give successive updates to the x; component in the solution vector. In synchronous com-
puting environments, each update to an element of the solution vector, x;, is computed sequentially using the
same data for the other components of the solution vector (i.e., the values for x; in Eq. (2)). Conversely, in
an asynchronous computing environment, each update to an element of the solution vector occurs when the
computing element responsible for updating that component is ready to write the update to memory and the
other components used are simply the latest ones available to the computing element. Expressing Eq. (2)
in a block form similar to Eq. (1) gives an iteration matrix of C = —D~!(L+U) where D is the diagonal
portion of A, and L and U are the strictly lower and upper triangular portions of A respectively. Convergence
of asynchronous fixed point methods of the form presented in Eq. (1) is determined by the spectral radius of
the iteration matrix, C.

3 RANDOMIZED LINEAR SOLVERS

Randomized asynchronous linear solvers (Avron, Druinsky, and Gupta 2015, Leventhal and Lewis 2010,
Griebel and Oswald 2012) select the vector component to update (see Eq. (2)) from a random distribution
instead of either sequentially looping through the available components or by tying the updates for a single
component to a particular processor. In a traditional parallelization of either a synchronous or asynchronous
linear solver, processor j is responsible for updating component j; the asynchronous variant allows pro-
cessor j to continue to compute relaxations for the component assigned to it regardless of the state of the
other processors. The use of randomization in the selection of which component to update allows for the
possibility of any processor updating any component.

In a randomized asynchronous linear solver, when a processor finishes computing an update to a component,
it writes the update to shared memory and then randomly draws the next component to update from the list
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of all available components. To the best of our knowledge, in the randomized asynchronous linear solvers
proposed to date this random selection is always done using uniform random number generation. A major
point of exploration here is to investigate the feasibility of using non-uniform distributions in this selection.

3.1 Improved Randomized Linear Solvers

The Southwell algorithm (Southwell 1946) works similar to Jacobi method described in Section 2 by re-
laxing a single equation at a time, but chooses the equation with the largest local residual. This difference
allows the Southwell algorithm to often converge in fewer iterations than Jacobi, but raises the expense of
computing an update since the local residuals need to be stored and ranked at each iteration. For example,
after a given iteration, the Southwell algorithm will choose the component that contributes the most to the
global residual to update; in order to do this, the algorithm must rank the residuals from largest to smallest.

Using the insight from the Southwell algorithm and the success found in the parallel Southwell implementa-
tions (Wolfson-Pou and Chow 2016, Wolfson-Pou and Chow 2017), the idea behind the randomized linear
solvers considered here is for each processor to select the next component it is responsible for updating
randomly, using a distribution that more heavily weights selection of components that contribute more to
the global residual. Pseudo-code for a randomized variant is provided by Algorithm 2, which is the same as
the one for the randomized asynchronous Jacobi presented in (Avron, Druinsky, and Gupta 2015), where a
uniform distribution over {1,2,...,n} is studied. The key difference of the present work is that here non-
uniform distributions in Line 3 of Algorithm 2 are investigated. As motivating example, consider the two
dimensional finite-difference discretization of the Laplacian —Au = f with Dirichlet boundary conditions
taken over a 10 x 10 grid. This results in 100 different components to update. The initial residuals for
each component are shown in Fig. 1 both unsorted (left) and sorted from largest to smallest (right). From
Fig. 1b, it may be clearly seen that using a non-uniform distribution that favors specific parts of the “slope”
is effectively possible. And prioritizing the updates of the components contributing the most to the global
residual may be beneficial to convergence as was shown for the Southwell method.

Algorithm 2: Generic Randomized Linear Solver

1 for each processing element P, do

2 fori=1,2,... until convergence do

3 Pick j € {1,2,...,n} using probability distribution
4 Read the corresponding entries of A, x, b

5 Perform the relaxation for equation x;

6 Update the data for x;

The goal behind the proposed modification is that relaxing the components with a more significant contri-
bution to the global residual may reduce the total number of iterations required. This reduction will have
to be shown to be significant enough to offset the extra computational and communication base cost as-
sociated with storing and ranking the local residuals. In an effort to simulate the effect of the Southwell
algorithm using randomized asynchronous solvers, the local residuals associated with each equation (or
block of equations) are ranked and sorted, and the selection of the next equation (i.e., component) to up-
date is performed using a non-uniform distribution that forces the random selection to pick components
with larger local residuals. Since ranking and sorting local residuals can be expensive, the periodicity with
which this is done contributes to the overall efficiency of the algorithm. Previously in (Jensen, Coleman,
and Sosonkina 2018), the authors have studied a balance between computational effort spent performing
relaxations compared with other algorithmic operations and communications in asynchronous methods.
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Figure 1: Initial component residuals (r;/ max(r;)).

4 EXPERIMENTS WITH DIFFERENT RANDOMIZED SOLVERS AND DISTRIBUTIONS

Two series of numerical experiments are presented in this section. The first focuses on investigating the
potential performance of different randomized asynchronous linear solvers through a series of MATLAB®
experiments, and the second, presented in Section 4.1, provides a more detailed analysis of shared memory
implementations of several different randomized asynchronous linear solvers.

In Fig. 2, several different distributions are shown normalized against the sorted list of residuals from the
solution of Laplacian. Figure 2a and Fig. 2b show the same distributions against the list of residuals after
each component has been updated 10 times. Both plots are normalized against the largest single residual. A
variety of other iteration numbers were investigated, however behavior of the normalized residuals is very
similar and therefore only a single instance is shown.

Throughout this section the experiments are performed using MATLAB®. The probability density function
(PDF) for the exponential distribution uses the parameter A which ranges from % to 2. For the normal
distributions, the PDF is defined by a mean, u, and a standard deviation, 6. In each of the distributions
shown, u is set to 10, and o ranges from 2 to 20. Regardless of the distribution chosen to weight the
asynchronous linear solver, tuning the parameters that control the distribution to the specific problem at
hand can be used to improve performance. For instance, in a problem where most components have a
very similar contribution to the residual, using a moderately flat distribution may be a way to accelerate
convergence. For example, if the gap between the largest and smallest contributors shown in Fig. 2a or
Fig. 2b were very small, there would be less benefit to weighting the distribution used to randomly select
the next component in a non-uniform manner.

As an example of potential convergence rates, Fig. 3 shows the progression of the residuals over the first
10,000 iterations when solving the two- and three-dimensional finite-difference discretizations of the Lapla-
cian over a 10 x 10 and 10 x 10 x 10 grids, respectively. Here, the four solution methods used are the
traditional synchronous Jacobi algorithm, a traditional Southwell algorithm, and two randomized linear
solvers: one choosing the component to update using a uniform random distribution, and another using an
exponential random number distribution with the parameter A = 2. Note that the convergence of the ran-
domized linear solver using the uniform distribution is slightly inferior to traditional solvers and to the one
with exponential distribution. The latter performs on par with the Southwell, both in the 2D and 3D cases.
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Figure 2: Sorted residuals (r;/ max(r;)) with exponential and normal distributions for reference.
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Figure 3: Residual (r/rg) progression for the first 10,000 iterations of four stationary methods solving the
2D (a) and 3D (b) Laplacian.

4.1 Larger Scale Experiments Using Shared-Memory Platforms

This series of experiments details an implementation of the randomized asynchronous linear solver described
earlier written in C++ using OpenMP® conducted on the Rulfo system at Old Dominion University. The
code used standard C++ routines for sorting residuals and generating random numbers, with the default
parameters and the built-in distributions. The Rulfo system has an Intel®Xeon Phi™'Knight’s Landing 7210
model processor with 64 cores running at 1.30 GHz and 112 GB of DDR4 physical memory used as DRAM
in these experiments. One thread per core was utilized, with one core reserved for interfacing with the
operating system, resulting in 63 computational threads.

The same test problem, the finite-difference discretization of the Laplacian, used here but over a larger,
800 x 800, grid. Instead of selecting a single component in the grid, a block of components is selected and
Gauss-Seidel sweeps are performed on the components in the block. The blocks consist of all components
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in a five-row section of the grid. This incorporates 4000 of the 640,000 grid points into each block resulting
in 71 = 160 blocks as sketched in Fig. 4.

Algorithm 3: Block Variant of Randomized Linear
B | Solver : .
input: ranking period 7, number of block-rows 1,
number of block relaxations m
1¢,=0,c0=0
2 for each processing element P; do

3 fori=1,2,... until convergence do
4 if (c; mod 7) is O then
3 5 Master: rank and sort residuals
6 if (c2 mod m) is O then
7 Pick j € {1,2,...,/i} using

probability distribution

Bi¢o 8 Read corresponding entries of A, x, b
9 Perform 1 relaxation for block B;
Figure 4: Block assignment used in the grid 10 Update the data for B;
Master: c; = c;+ 1
for the example problem.
12 co=cy+1
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Figure 5: Comparisons of normal, exponential, and uniform distributions for runs with one block-relaxation
per thread task. The dashed line references calculation time with uniform distribution. In (b), u ranges from
16 to 54. In (c), A ranges from 0.01 to 0.8.

In the task-based asynchronous solver, a thread chooses a block to update by sampling from a distribution.
The number it draws corresponds to an index in a list of blocks, ranked in order of descending component
residuals. For example, if a thread draws the number zero from the distribution, it will update the block of
components with the largest residual, assuming that block is not being updated by another thread. In the
case that a thread selects a block that is already being worked on by another thread, the selecting thread
searches sequentially either up or down in the rankings until it finds an available block.

Initially, block residual rankings are assigned via a natural ascending ordering. A single thread, denoted the
residual ranking thread, is tasked with computing the component residuals, sorting the residual rankings,
and updating the global ranking list that all the threads use to selects blocks to update. Note that using a
single thread leads to a more accurate global ranking list and does not result in a bottleneck for a moderate
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number of threads. For large-scale distributed implementations, a different ranking procedure will have to
be developed in the future.

In this work, the residual ranking thread performs ranking and list-updating after every five iterations of the
linear system solver. Essentially, Algorithm 2 may be modified to include ranking periodicity T as shown
in Algorithm 3. This ranking period needs to be chosen judiciously, depending on several factors, such as
the number m of relaxations performed, the number of threads used, and the number 7 of block-rows to
rank. Here, T =5 was found experimentally to mitigate the ranking overhead for the obtained number of
iterations to convergence, while the number of relaxations was varied. A more detailed investigation of the
ranking periodicity is warranted and left as future work.
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Figure 6: Comparisons of normal, exponential, and uniform distributions for runs using one to thousand
block-relaxations per thread task. The shaded blue area indicates faster performance than that with the
uniform distribution.

For block selection, three different distributions are tested. The uniform distribution is used as a control; a
thread may select any block with equal probability. The normal distribution is used to examine the effects of
targeting different segments of blocks in the rankings, that is blocks with lower ranks and higher residuals
versus blocks with higher ranks and lower residuals. Finally, the exponential distribution, as a best-case
scenario, is used to define the maximum performance gain for this problem, compared to uniform sampling.
When a thread selects a block, it may perform one or more relaxations to update the block, depending
on the application configuration. Figure 5 shows results for the three distributions, for one relaxation per
block-task. For u less than or equal to 44, Fig. 5a shows calculation times are relatively small, but when u
increases to 46 and beyond, calculation times vary and tend to increase, as seen in Fig. 5Sb. Note that, for
normal distribution calculations in this work, o is always eight which helps keep an emphasis on selecting
components near the mean. For exponential distribution (Fig. 5c), performance degradation is gradual as
A increases. Due to the nature of the exponential distribution the mode is always zero regardless of A.
With either distribution, appropriate parameters give performance faster than the selection with the uniform
distribution does.

For the normal and exponential distributions, the effects of varying the number of relaxations per block-task
are shown in Fig. 6. Figure 6a demonstrates that increasing the number of relaxations has some capacity to
compensate for inappropriately large values of (1. When a large u is used to select ranked blocks, selecting a
low-ranked block with relatively high residual is uncommon. In the case that a low-ranked block is selected,
only one relaxation may not be adequate to reduce the component residual such that the rank for that block
is increased enough to increase the probability of future selection. Hence, performing more relaxations on
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a low-ranked block increases the shuffling of the block rankings. However, if too many relaxations are
performed performance can degrade; note the case of yu = 16 and 1000 iterations per selection in Fig. 6a.
Average best times for normal distribution with u=16, one block-relaxation, exponential A=0.8 and ten
relaxations, and uniform with one relaxation were 68.60, 65.42, and 79.13 seconds, respectively.
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Figure 7: Progression of block component residuals throughout the calculation when normal distribution is
used with one block relaxation. Residuals are recorded every 50 iterations.

Figures 7 and 8 provide a more detailed explanation for performance differences based on u selection. In
particular, Figs. 7a and 7b depict that the ordered component residual values for i equal to 16 and 44 and are
nearly indistinguishable. However, when u increases to 48 (Fig. 7c) and then again to 52 (Fig. 7d) residuals
of the lowest-ranked blocks decrease slowly while the residuals of all other blocks are much smaller in com-
parison. Figures 8a and 8b show that block rankings are well-shuffled for u equal 16 and 44, but in Figs. 8c
and 8d block rankings become stratified for u greater than 48. This stratification indicates that, throughout
the calculation, some blocks are updated less frequently than others, which eventually leads to performance
degradation. Figure 9b shows that when  is 52, this stratification can be corrected by increasing the number
of block relaxations to 10, leading to the improved performance seen in Fig. 9a. Figure 10 shows good block
rank shuffling and balanced component residuals for the minimum and maximum values of A used in this
work and 1 block relaxation per selection.
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Figure 8: Progression of block component rankings throughout the calculation when normal distribution is
used with one block relaxation. Rankings are shown every 50 iterations.

Figure 11a shows global residual behavior at the threshold of i equal 46, at which runs may differ signifi-
cantly from the behavior of ¢t = 16 runs. Figures 11a to 11c show that the performance continues to degrade
as U increases. Figure 11d shows that the parameter A for the exponential distributions does not have as
much an impact on performance as the parameter it does for the normal distribution runs. Figure 11e, shows
the best performance for the parameters tested in each of the distributions with one block relaxation exe-
cuted. The same outcome as before seen here as well: Calculations with either the normal and exponential
distributions outperform the uniform one.
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Figure 10: Block component residual and corresponding ranking progression for the calculations using
exponential distribution and 1 block relaxations per selection.

5 SUMMARY & FUTURE WORK

This paper has shown a benefit of using a non-uniform distribution in the selection of the component to
update for an asynchronous linear solver. A further investigation into the ranking periodicity and technique
for sorting the residuals is warranted in the scope of studying the overall efficiency of the proposed ran-
domized linear solver variant. Future work also includes examining the performance of distributed memory
implementations, testing on more diverse problems, considering weighted asynchronous linear solvers as
multigrid smoothers, and developing theoretical results that provide bounds on the rate of convergence.
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Fig. 11e the parameters are optimized for a single relaxation per selection.
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