
CONVERGENCE AND RESILIENCE OF THE FINE-GRAINED PARALLEL
INCOMPLETE LU FACTORIZATION FOR NON-SYMMETRIC PROBLEMS

Evan Coleman

Naval Surface Warfare Center
Dahlgren Division
17320 Dahlgren Rd
Dahlgren, VA, USA
ecole028@odu.edu

Masha Sosonkina

Department of Modeling, Simulation
and Visualization Engineering

Old Dominion University
5115 Hampton Blvd, Norfolk, VA, USA

msosonki@odu.edu

SpringSim-HPC, 2018 April 15–18, Baltimore, MD, USA; ©2018 Society for Modeling & Simulation International (SCS)

ABSTRACT

This paper presents an investigation into the convergence of the fine-grained parallel algorithm for com-
puting an incomplete LU factorization for non-symmetric and indefinite matrices. The fine-grained parallel
incomplete LU factorization is a nonlinear fixed point iteration and convergence has not been extensively
studied for problems that are not symmetric positive definite. This work investigates the convergence of the
algorithm for these more difficult problems and additionally investigates how the occurrence of a computing
fault may impact the convergence of the algorithm for the problems being studied. The results obtained
suggest that this class of problems presents challenges for the fine-grained parallel incomplete LU factor-
ization (less than 30% of configurations converge naturally), and that while the occurrence of a fault can
cause significant negative effects, the simple algorithmic change advocated here can completely ameliorate
the effects of a fault.

Keywords: incomplete LU factorizations, preconditioning, fine-grained parallelism, fault tolerance

1 INTRODUCTION

Fine-grained methods are increasing in popularity recently due to their ability to be parallelized naturally on
modern co-processors such as GPUs and Intel Xeon Phis. Many examples of recent work using fine-grained
parallel methods are available (Chow, Anzt, and Dongarra 2015, Chow and Patel 2015, Anzt, Chow, and
Dongarra 2015). A specific area of interest is on techniques that utilize fixed point iteration, i.e., x = G(x)
for some vector x and map G. These methods can be computed in either a synchronous or asynchronous
manner which helps tolerate latency in high-performance computing (HPC) environments. Looking forward
to the future of HPC, it is important to keep in mind the need for developing algorithms that are resilient to
faults. On future platforms, the rate at which faults occur is expected to decrease dramatically (Cappello,
Geist, Gropp, Kale, Kramer, and Snir 2009, Cappello, Geist, Gropp, Kale, Kramer, and Snir 2014, Asanovic,
Bodik, Catanzaro, Gebis, Husbands, Keutzer, Patterson, Plishker, Shalf, Williams, et al. 2006, Geist and
Lucas 2009). The fine-grained parallel incomplete LU (FGPILU) factorization (Chow and Patel 2015),
which is the focus of this work, is a popular preconditioning method that can be used as a building block
for iterative linear-system solvers geared towards novel computing platforms. Typically when working with
difficult problems, preconditioning techniques move beyond the fill-in level-based ILU factorizations, of



Coleman and Sosonkina

which FGPILU is representative, to threshold-based ones such as ILUT (Saad 2003), or to even to algebraic
multilevel preconditioning such as ARMS (Saad and Suchomel 2002).

The FGPILU algorithm is a nonlinear fixed point iteration, and while convergence of the algorithm is guar-
anteed for some neighborhood around the solution, questions remain regarding the practical performance
of the algorithm with respect to difficult problems. For the purposes of this work, “difficult” problems are
defined to be those that satisfy any one of the following three criteria: (i) non-symmetric, (ii) not diagonally
dominant, or (iii) ill-conditioned (including indefinite matrices). The majority of the work on the algorithm
so far has focused on matrices that are symmetric and positive-definite (SPD) (Chow and Patel 2015, Chow,
Anzt, and Dongarra 2015, Coleman, Sosonkina, and Chow 2017), and the performance of the algorithm on
non-symmetric and indefinite matrices has not been firmly established. Moreover, if the convergence of the
algorithm for these classes of problems is less than desirable, they may be more prone to suffer divergence
when faced with a fault.

Developing algorithms that are resilient to faults is of paramount importance and fine-grained parallel (fixed
point) methods are no exception. Faults can be divided into two categories: hard faults and soft faults
(Bridges, Ferreira, Heroux, and Hoemmen 2012). Hard faults cause immediate program interruption and
typically come from negative effects on the physical hardware components of the system or on the operating
system itself. Soft faults represent all faults that do not cause the executing program to stop and are the focus
of this work. Most often, these faults refer to some form of data corruption that is occurring either directly
inside of, or as a result of, the algorithm that is being executed. This paper examines the potential impact
of soft faults on the fine-grained parallel incomplete LU factorization, and also investigates the use of fine-
grained parallel incomplete LU algorithm generated preconditioners on Krylov subspace solvers. The main
contributions of this work are analyzing the ability of the FGPILU fixed point iteration to complete success-
fully when attempting to solve difficult problems under a myriad of different configurations, investigating
how the convergence is affected by the occurrence of a soft fault, and demonstrating that the effects of a fault
can be mitigated by the simple checkpointing scheme proposed in Coleman, Sosonkina, and Chow 2017.
The structure of this paper is organized as follows: In Section 2, a brief summary of some related studies is
provided. In Section 3, an overview of fixed-point iterations specific to their use in high performance com-
puting is given. In Section 4, background information is provided for the fine-grained parallel incomplete
LU algorithm. In Section 5, a theoretical underpinning of the fine-grained parallel incomplete LU algorithm
with respect to its convergence for nonsymmetric or indefinite problems is explored. In Section 6, a series
of numerical results are provided, while Section 7 concludes.

2 RELATED WORK

Other work on using (conventional) incomplete LU factorizations for solving difficult problems from vari-
ous disciplines has been conducted previously, including the more general studies found in Chow and Saad
1997 and Benzi, Haws, and Tuma 2000. The increase in faults for future HPC systems is detailed in sev-
eral different places (Asanovic, Bodik, Catanzaro, Gebis, Husbands, Keutzer, Patterson, Plishker, Shalf,
Williams, et al. 2006, Cappello, Geist, Gropp, Kale, Kramer, and Snir 2009, Cappello, Geist, Gropp, Kale,
Kramer, and Snir 2014, Snir, Wisniewski, Abraham, Adve, Bagchi, Balaji, Belak, Bose, Cappello, Carlson,
et al. 2014, Geist and Lucas 2009). An initial look into fault tolerance for the FGPILU algorithm is provided
in Coleman, Sosonkina, and Chow 2017; the variants of the FGPILU algorithm discussed therein build on
ideas from various methods for fault tolerance (Sao and Vuduc 2013, Bridges, Ferreira, Heroux, and Hoem-
men 2012, Hoemmen and Heroux 2011). A more general approach for simulating the occurrence of faults
is taken in this study. Several recent studies have adopted similar techniques (Coleman and Sosonkina 2016,
Coleman, Jamal, Baboulin, Khabou, and Sosonkina 2017, Elliott, Hoemmen, and Mueller 2015, Elliott,
Hoemmen, and Mueller 2014, Stoyanov and Webster 2015). The fault model used in this paper is a combi-
nation of a modified version of the one initially developed in Coleman and Sosonkina 2016 that was used



Coleman and Sosonkina

in Coleman, Sosonkina, and Chow 2017. Details on the fault model used here are provided in Section 6.1.
Fine-grained parallel methods, specifically parallel fixed point methods, are an area of increased research
activity due to the practical use of these methods on HPC resources. An initial exploration of fault tolerance
for the FGPILU factorization studied here is provided in Coleman, Sosonkina, and Chow 2017 and ?, and
an exploration of resilience for stationary iterative linear solvers (i.e., Jacobi) is given in Anzt, Dongarra,
and Quintana-Ortí 2015. Fault tolerance for fixed point algorithms has been investigated in Stoyanov and
Webster 2015, and a more general exploration of fault tolerance for fine-grained methods is provided in
Coleman and Sosonkina 2017. The general convergence of parallel fixed point methods has been explored
extensively (Addou and Benahmed 2005, Frommer and Szyld 2000, Bertsekas and Tsitsiklis 1989, Ortega
and Rheinboldt 2000, Baudet 1978, Benahmed 2007).

3 FIXED POINT ITERATION

Fixed point iterations are concerned with finding solutions to the iteration xk+1 = G(xk) where G : Rn →
Rn is composed of component-wise functionals gi such that

x1 = g1(x⃗) , x2 = g2(x⃗) , . . . xn = gn(x⃗) ,

where the subscript represents the component, the iteration superscripts have been removed, and the vector
notation is added to emphasize that each individual functional used to update a specific component can
(potentially) rely on all other components. In a parallel computing environment, the task of finding the
update for an individual (or set of) component(s) can be assigned to an individual processing element.
In a system that relies on synchronous updates, the functionals all utilize the same components of x⃗. In
particular, xk+1

i = gi(x⃗
k) for all components i ∈ {1, 2, . . . , n}. On the other hand, in the asynchronous

case processors will use the latest information available to them. This will lead to different update patterns
for each of the individual functionals, each of which will be utilizing components that are updated a different
number of times. The convergence of parallel fixed point iterations is discussed in the literature for both
the synchronous (Addou and Benahmed 2005) and asynchronous (Frommer and Szyld 2000) cases among
many other sources (Bertsekas and Tsitsiklis 1989, Ortega and Rheinboldt 2000, Baudet 1978, Benahmed
2007).

4 FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

The fine-grained parallel incomplete LU (FGPILU) factorization approximates the true LU factorization
and writes a matrix A as the product of two factors L and U where, A ≈ LU . Normally, the individual
components of both L and U are computed in a manner that does not allow easy use of parallelization. The
recent FGPILU algorithm proposed in Chow and Patel 2015 allows each element of both the L and U factors
to be computed independently. The algorithm progresses towards the incomplete LU factors that would be
found by a traditional algorithm in an iterative manner. To do this, the FGPILU algorithm uses the property
(LU)ij = aij for all (i, j) in the sparsity pattern S of the matrix A, where (LU)ij represents the (i, j) entry
of the product of the current iterate of the factors L and U . This leads to the observation that the FGPILU
algorithm (given in Algorithm 1) is defined by the following two nonlinear equations:

lij =
1

ujj

(
aij −

j−1∑
k=1

likukj

)
, uij = aij −

i−1∑
k=1

likukj . (1)

Following the analysis presented in (Chow and Patel 2015), it is possible to collect all of the unknowns lij
and uij into a single vector x, then express these equations as a fixed-point iteration, x(p+1) = G

(
x(p)

)
,

where the function G implements the two nonlinear equations described above. The FGPILU algorithm is



Coleman and Sosonkina

given in Algorithm 1. Keeping with the terminology used in Chow and Patel 2015 and Chow, Anzt, and

Algorithm 1: FGPILU algorithm as given in (Chow and Patel 2015).
Input: Initial guesses for lij ∈ L and uij ∈ U
Output: Factors L and U such that A ≈ LU

1 for sweep = 1, 2, . . . ,m do
2 for (i, j) ∈ S do in parallel
3 if i > j then
4 lij = (aij −

∑j−1
k=1 likukj)/ujj

5 else
6 uij = aij −

∑i−1
k=1 likukj

Dongarra 2015, each pass the algorithm makes in updating all of the lij and uij elements (alternatively: each
element of the vector x) is referred to as a “sweep”. After each sweep of the algorithm, the L and U factors
progress towards convergence. At the beginning of the algorithm, the factors L and U are set with an initial
guess. In this study, the initial L factor will be taken to be the lower triangular part of A and the initial U
will be taken to be the upper triangular portion of A (as in Chow and Patel 2015, Coleman, Sosonkina, and
Chow 2017, Anzt, Chow, Saak, and Dongarra 2016). Adopting the technique used in Chow and Patel 2015,
Chow, Anzt, and Dongarra 2015, Coleman, Sosonkina, and Chow 2017, a scaling of the input matrix A is
first performed such that the diagonal elements of A are equal to one. As pointed out in Chow and Patel
2015, this diagonal scaling is able to help maintain reasonable convergence rates for the algorithm, and the
working assumption in this paper is that all matrices have been scaled in this manner.

5 CONVERGENCE OF THE FGPILU FACTORIZATION

The analysis to show convergence of the FGPILU algorithm relies on properties of the Jacobian associated
with the nonlinear mapping defined by G : Rm → Rm where m represents the number of non-zero terms in
the matrix A. To define the Jacobian, an order of the elements in both the L and U factors (which together
constitute all of the elements in the vector x⃗ from Section 3) needs to be defined. In particular, an ordering g
will map a pair of (i, j) coordinates specifying the location of a non-zero term in A to an index of the vector
x, or to the set {1, 2, 3, . . . ,m} where m = nnz(L) + nnz(U). That is,

xg(i,j) =

{
lij i > j

uij i ≤ j .

Given this, the two nonlinear equations that define FGPILU, i.e., Eq. (1), can be rewritten such that,

Gg(i,j) =


1

xg(j,j)

(
aij −

∑
1≤k≤j−1

xg(i,k)xg(k,j)

)
i > j

aij −
∑

1≤k≤i−1

xg(i,k)xg(k,j) i ≤ j ,
(2)



Coleman and Sosonkina

where both sums are taken over all pairs, (i, k) and (k, j) ∈ S(A). The Jacobian itself can then be written
G′(x) = J(G(x)) and is defined by the following equations (Chow and Patel 2015):

∂Gg(i,j)

∂xg(k,j)
= −

xg(i,k)

xg(j,j)
, k < j

∂Gg(i,j)

∂xg(i,k)
= −

xg(k,j)

xg(j,j)
, k < j (3)

∂Gg(i,j)

∂xg(j,j)
= − 1

x2g(j,j)

(
aij −

j−1∑
k=1

xg(i,k)xg(k,j)

)
for a row in the Jacobian where i > j (i.e., corresponding to an unknown lij ∈ L). Conversely, for a row
i ≤ j (i.e., corresponding to an unknown uij ∈ U ), the partial derivatives are given by:

∂Gg(i,j)

∂xg(i,k)
= −xg(i,k), k < i,

∂Gg(i,j)

∂xg(k,j)
= −xg(i,k), k < i . (4)

Under the assumption that there is a single fixed point solution x∗ of the nonlinear iteration defined by G(x),
the following result given in Theorem 1 provides convergence for the nominal FGPILU algorithm:

Theorem 1 (Frommer and Szyld 2000). Assume that x∗ lies in the interior of the domain of G and that G
is F-differentiable at x∗. If ρ(G′(x∗)) < 1, then there exists some local neighborhood of x∗ such that the
asynchronous iteration defined by G converges to x∗ given that the initial guess is inside of this neighbor-
hood.

Details of this analysis are provided in Chow and Patel 2015. As pointed out in that paper, one consequence
of Theorem 1 is that the algorithm will be successful when the norm of the Jacobian is small. Examining the
equations that define the partial derivatives inside of the Jacobian, this implies that the FGPILU algorithm
will be effective when the terms on the diagonal are large and the off diagonal terms are small; indicating
that the FGPILU algorithm will perform well for matrices that are diagonally dominant.

5.1 Improving the Convergence of the FGPILU Algorithm

In this work, an investigation is made into the performance of the FGPILU algorithm with respect to more
difficult problems. For a given problem, the FGPILU algorithm may fail to converge; i.e., the nonlinear
residual norm (see Eq. (2)) fails to decrease below a desired threshold or diverges entirely. Additionally,
the structure of the input matrix may preclude unmodified use of the FGPILU algorithm (e.g., due to zeros
on the diagonal). If the progression of the algorithm reaches a point where the norm of the Jacobian is
greater than one, the fixed point iteration no longer represents a (local) contraction and further sweeps will
not help the algorithm make progress towards the desired preconditioning factors. Even if the FGPILU
algorithm converges to a set of preconditioning factors, it is possible that, if the system was changed too
much to ensure convergence, the preconditioning factors will not aid in the convergence of the associated
Krylov solver. In fact, it is possible for the resulting L and U factors to actually slow convergence or prevent
convergence entirely (see both Table 2 and (?)). In an effort to improve the convergence of the FGPILU
algorithm, this study focuses on employing two techniques; both aim to increase the diagonal dominance of
the original matrix, which will in turn reduce the norm of the Jacobian and help ensure that the fixed point
iteration continues to make progress.

The first technique involves reordering the matrix in order to aid the convergence of the algorithm. Three
reorderings are considered here. The first is the MC64 reordering that attempts to permute the largest entries



Coleman and Sosonkina

of the matrix to the diagonal (?), the second is the approximate minimum degree (AMD) as implemented
in MATLAB since it has previously been observed to help convergence of the FGPILU algorithm on non-
symmetric problems (Chow and Patel 2015, Benzi, Haws, and Tuma 2000), the other is the Reverse Cuthill-
Mckee ordering (RCM) which attempts to reduce the bandwidth of the matrix which can potentially aid in
the convergence of the FGPILU algorithm and has shown to be effective in the case of symmetric, positive-
definite (SPD) matrices (Chow, Anzt, and Dongarra 2015, Chow and Patel 2015, Coleman, Sosonkina, and
Chow 2017). After the ordering is applied, the second technique consists of an α-shift that is performed in
the manner originally suggested in ?. Specifically, the original input matrix A can be written, A = D − B,
where D holds only the diagonal elements of A, and B contains all other elements. Instead of performing
the incomplete LU factorization on the original matrix A, the factorization is instead applied to a matrix that
is close to A but has an increased level of diagonal dominance. In particular, the incomplete LU factorization
can be applied to Â = (1+α)D−B, where Â ≈ A but the size of the diagonal has been increased. This α-
shift technique has been used historically for improving the stability of the preconditioning factors generated
by conventional incomplete LU factorizations, but given the discussion above in Section 5 concerning the
fine-grained incomplete LU factorization that is the subject of this work, it is reasonable to expect this shift
to improve the convergence of the FGPILU algorithm. Moreover, since incomplete LU factorizations are
by nature, approximate, using the preconditioning factors obtained from applying the FGPILU algorithm to
Â before a Krylov solve of the original matrix A can be expected to accelerate the overall convergence for
reasonable values of α. These claims will be explored numerically through the remainder of the paper.

To track the progression of the FGPILU algorithm, a common metric to monitor the progression of the FG-
PILU algorithm is the so-called nonlinear residual norm (Chow and Patel 2015, Chow, Anzt, and Dongarra
2015, Coleman, Sosonkina, and Chow 2017). This is a value

τ =
∑

(i,j)∈S

∣∣∣∣∣∣aij −
min(i,j)∑
k=1

likukj

∣∣∣∣∣∣ , (5)

where the set S contains all of the non-zero elements in both L and U , i.e., the non-zero pattern on which
the incomplete LU factorization is sought. The nonlinear residual norm decreases as the number of sweeps
progresses and the factors produced by the algorithm become closer to the conventional L and U factors
that would be computed by a traditional incomplete LU factorization. Because of this it is possible to
detect convergence of the algorithm if the nonlinear residual norm is reduced by some pre-specified order
of magnitude. However, it should be noted that L and U factors are capable of being used successfully as
preconditioning factors (Chow and Patel 2015), and that in practice it may not be necessary to perform very
many sweeps of the FGPILU algorithm.

For the purposes of this study, a single fault tolerant variant of the FGPILU algorithm from Coleman,
Sosonkina, and Chow 2017 is tested. The variant of the algorithm that was selected monitors the progression
of the nonlinear residual norm τ and rejects updates if the update causes the nonlinear residual norm to
increase. In particular, the following condition is checked: τ (sweep) > γ · τ (sweep+r), where the parameter γ
controls how monotonic the convergence of the nonlinear residual norm is expected to be, and the parameter
r controls how long to delay (in terms of the number of sweeps) in between performing the check.

6 NUMERICAL RESULTS

The test problems that were used in this study are intended to form a representative but not complete set of
matrices that are harder to solve than the simpler SPD problems that have been utilized previously. The con-
vergence of the fixed point iteration associated with the FGPILU algorithm displays good convergence with
this type of problem (Coleman, Sosonkina, and Chow 2017, Chow, Anzt, and Dongarra 2015, Chow and
Patel 2015). However, solving fixed point iterations that feature nonlinear functionals (i.e., in Algorithm 1)



Coleman and Sosonkina

is often difficult, and developing the associated convergence theory is also typically hard to accomplish (see
for example: Bertsekas and Tsitsiklis 1989, Ortega and Rheinboldt 2000).

The experimental setup for this study is an NVIDIA Tesla K80 GPU on the Turing high performance clus-
ter at Old Dominion University. The nominal, fault-free iterative incomplete factorization algorithms and
iterative solvers were taken from the MAGMA open-source software library (Innovative Computing Lab
2015), and minimal modifications were made to the existing MAGMA source code in order to implement
the modifications to the FGPILU algorithm, add the α-shift, and to inject faults into the algorithm. All of
the results provided in this study reflect double precision, real arithmetic. The test matrices used here come
from a variety of sources. The first comes from the seminal work on the performance of incomplete LU
factorization for indefinite matrices (Chow and Saad 1997), fs_760_3. The next matrix comes from the
domain of circuit simulation, ecl32, and has been studied previously (?, ?). The last matrix comes from
the set of 8 SPD matrices that were studied in previous works on the FGPILU algorithm (Chow, Anzt, and
Dongarra 2015, Coleman, Sosonkina, and Chow 2017, Chow and Patel 2015), and is the matrix among
those eight with the largest condition number (as estimated by MATLAB’s CONDEST function); ’offshore’.
Condition numbers for the 8 previously studied SPD problems range from 1.11e+03 to 2.24e+13. A brief
summary of all three matrices is provided in Table 1. The matrices that are presented here attempt to give

Table 1: Characteristics of the matrices used: Column Sym? reflects the symmetry, PD? provides positive-
definiteness, Dim—number of rows, and Non-zeros–number of non-zeros in each matrix.

Matrix Name Abbr. Sym? PD? CONDEST Dim. Non-zeros Description
fs_760_3 FS N N 9.93E+19 760 5,816 chemical engineering

ecl32 ECL N N 9.41E+15 51,993 380,415 circuit simulation
OFFSHORE OFF Y Y 2.24E+13 259,789 4,242,673 electric field diffusion

some indication as to the performance of the nonlinear fixed point iteration associated with the FGPILU
with respect to matrices that are more challenging computationally than the problems that are featured in
the majority of the previous work on the algorithm (i.e. Chow and Patel 2015, Chow, Anzt, and Dongarra
2015, Coleman, Sosonkina, and Chow 2017).

6.1 Fault Model

In this study, faults are modeled as perturbations similar to several recent studies (Coleman and Sosonkina
2016, Coleman, Sosonkina, and Chow 2017, Stoyanov and Webster 2015); the goal being producing fault
tolerant algorithms for future computing platforms that are not too dependent on the precise mechanism
of a fault (e.g. bit flip). Modifying the perturbation-based fault model described in Coleman, Sosonkina,
and Chow 2017, a single data structure is targeted and a small random perturbation is injected into each
component transiently. For example, if the targeted data structure is a vector x and the maximum size of the
perturbation-based fault is ϵ, then proceed as follows: generate a random number ri ∈ (−ϵ, ϵ), and then set
x̂i = xi + ri for all values of i. The resultant vector x̂ is, thus, perturbed away from the original vector x.
In this study, faults are injected into the FGPILU algorithm following the perturbation based methodology
described above. Due to the relatively short execution time of the FGPILU algorithm on the given test
problems, a fault is induced only once during each run, and the fault is designated to occur at a random
sweep number before convergence. Three ranges for faults injected by the perturbation-based model were
considered: ri ∈ (−0.01, 0.01), ri ∈ (−1, 1), and ri ∈ (−100, 100). Due to the non-deterministic nature of
the fault model, multiple runs are conducted for each value of ri and the data is averaged in order to obtain
representative results.



Coleman and Sosonkina

6.2 Convergence of the FGPILU fixed point iteration and associated Krylov solver

In these fault-free experiments, the convergence of the FGPILU algorithm is examined for three different
levels (0,1, and 2) of the incomplete LU factorization (see Benzi 2002 or Saad 2003 for a clear description
of levels of incomplete LU factorizations), and three different values of α in the α-shift. Note that regardless
of the ordering being utilized, all runs start with a symmetrically scaled matrix such that the entries on the
diagonal are less than or equal to 1. As such, appropriate values for α range from 0 to 1 and in this study
three discrete values were selected: 0, 0.5, 1.0. More extreme values for α can help improve the convergence
of the FGPILU algorithm by increasing the diagonal dominance of the matrix that the FGPILU algorithm
is applied to, but this comes at the expense of preparing the preconditioner for a problem increasingly
less related to the original problem. As an example, for the OFFSHORE problem with AMD ordering and
symmetric scaling, the FGPILU algorithm converges in a smaller number of sweeps for increasing values of
α, but the overall performance of the Krylov subspace solver deteriorates. Details are provided in Table 2.

Table 2: Effects of increasing α for the OFFSHORE problem.

α FGPILU Sweeps Krylov solver iterations Krylov solver time
0 24 30 24.8067
1 9 56 46.4995

10 5 144 130.0958

For each of the three matrices that were tested: four orderings were tested (MC64, AMD, RCM, and the
natural ordering), 3 level of ILU fill-in were tested (levels 0, 1, and 2), and 3 factors for α were used (0, 0.5,
and 1.0). This leads to a total of 108 permutations to test. Of these 108 combinations, 84 (77.78%) led to a
case were the FGPILU algorithm converged, but only 29 (26.85%) resulted in a successful GMRES solve of
the entire linear system using a restart parameter of 50 and a tolerance of 1e-10. Details for those 29 cases
are provided below in Table 3.

Table 3: Successful runs with their parameter combinations.

Matrix Ordering α ILU Level Sweeps Krylov Its. Time (s)
offshore AMD 0 0 19 30 18
offshore AMD 0.5 0,1,2 10,11,11 40,34,34 24,55,144
offshore AMD 1 0,1,2 8,9,9 56,54,54 34,96,229
offshore RCM 0 0 19 19 35
offshore RCM 0.5 0,1,2 10,11,11 37,34,34 68,306,771
offshore RCM 1 0,1,2 9,9,9 54,54,54 101,484,1226
offshore Natural 0 0 22 22 84
offshore Natural 0.5 0,1,2 11,12,12 38,34,34 146,312,695
offshore Natural 1 0,1,2 9,10,10 54,54,54 210,491,1104
ecl32 AMD 0 2 15 127 104
ecl32 RCM 0 2 24 9 39
ecl32 Natural 0 2 18 11 16
fs_760_3 AMD 0 2 55 3 0.4
fs_760_3 RCM 0 1,2 52,63 2,2 0.4,0.4
fs_760_3 MC64 0 1 16 3 0.3
fs_760_3 Natural 0 1 16 3 0.3

In general, higher levels of fill are capable of producing better preconditioning factors (Benzi, Haws, and
Tuma 2000, Chow and Saad 1997), but come at the cost of increased storage and computational costs. There
is an inherent trade-off in using higher fill levels to produce incomplete factors that are closer to the full L



Coleman and Sosonkina

and U factors that must be evaluated. A few other general observations: the two non-symmetric problems
tend to perform better with smaller values of α and higher levels of fill-in allowed, and the level of ILU
fill-in tends to not have as much of an impact on whether or not the problem can be solved when compared
to the ordering or value for α, but affects the performance. In the results found here, the benefit of having
more complete L and U factors from going to a higher fill-in level tends to be outweighed by the increased
computational cost of the fixed-point iteration associated with the FGPILU algorithm for a drastically larger
number of elements. As an example of the drastic increase in the number of non-zero elements for each of
the matrices, consider the data in Table 4.

Table 4: Increase in non-zeros for different levels of ILU fill-in.

Matrix nnz(ILU-0) nnz(ILU-1) nnz(ILU-2)
offshore 4.502E+06 9.974E+06 2.172E+07
ecl32 4.324E+05 9.473E+05 1.954E+06
fs_760_3 6.576E+03 1.757E+04 3.231E+04

6.3 Resilience of the FGPILU fixed point iteration

The experiments conducted in this section reflect the resilience of the FGPILU algorithm with respect to
transient soft faults. Resilience is provided by checkpointing and restoring prior data based on the progres-
sion of the nonlinear residual norm. To illustrate the resilience of the FGPILU algorithm, only combinations
of ordering, ILU-level, and α from Section 6.2 that were successful in the fault-free scenario have been se-
lected for experimentation. A single set of parameters for the checkpointing check, τ (sweep) > γ ·τ (sweep+r),
is used. Both γ and r were set to one so that a strict check on the monotonicity of the nonlinear residual
norm is performed after every sweep. For SPD problems, this level of check may be unnecessary (Coleman,
Sosonkina, and Chow 2017), but this provides the maximum level of protection for the FGPILU algorithm
and provides a measure of how effective this check can be for the more difficult problems under investigation
in this study. A summary of the data found in these experiments is provided in Table 5, which depicts the

Table 5: Solver performance using FGPILU with no fault tolerance (NoFT) and checkpointing (CP).

Scenario Success Rate (NoFT) Success Rate (CP) Timing Ratio Sweeps Ratio Its. Ratio
Total 46.65% 100.00% 1.02 0.63 1.01
Small fault 88.59% 100.00% 1.03 0.69 1.03
Medium fault 42.94% 100.00% 1.01 0.48 1.00
Large fault 14.71% 100.00% 1.00 0.73 0.99

percentage of runs that succeeded—resulted in a successful linear system solve—subject to faults (column
Scenario), when no fault tolerance (column NoFT) and the checkpointing FGPILU variant (column CP)
were employed, respectively. Three ratios of the results with CP and NoFT are shown in Table 5 as Timing,
Sweeps, and Its, defining the timing increase, reduction in the total number of sweeps needed, and the
change in the GMRES iterations, respectively. The checkpointing algorithm mitigates well the potential
impact of a fault. Note that the largest benefit comes from correcting the impact of a large fault. Smaller
faults—which cause effects similar to those produced by bit flips in a less significant bit of the mantissa—
tend to be corrected naturally by the iterative nature of the fixed-point iteration. Another important factor
in comparing any fault tolerance methods is quantifying how much overhead they introduce. Due to the
non-deterministic block-asynchronous nature of the GPU implementation of the FGPILU algorithm in the
absence of faults and the inherent randomness involved in the fault model utilized in this study, it is dif-
ficult to compare individual cases. However, comparing runs utilizing the same parameters over all cases
where both the fault-free variants and the checkpointing variant solved the linear system successfully, there
is about a 2% increase in the time required to reach a solution in order to provide fault tolerance to the



Coleman and Sosonkina

FGPILU algorithm using this methodology. There is more of an impact on cases with small faults since it is
often possible for the iterative nature of the algorithm to correct the impact of a sufficiently small fault. Note
that varying the parameters γ and r that determine the frequency and strictness of the check could change
both the efficiency and efficacy of the checkpointing variant of the FGPILU.

7 CONCLUSION & FUTURE WORK

This study has presented some experiments and analysis concerning the convergence of the fine-grained
parallel incomplete LU factorization proposed in Chow and Patel 2015 with respect to more difficult prob-
lems than have previously been studied. Additionally, initial work concerning the resilience of the FGPILU
algorithm with respect to transient soft faults has been explored for this same difficult problem set. Moving
forward, further adaptations to the FGPILU algorithm are possible. This series of experiments has worked
with various levels of ILU factorization, while a variant of ILUT that takes advantage of fine-grained paral-
lelism called ParILUT (?) has been proposed recently, and previous work on the performance of incomplete
factorizations for the solution of indefinite and non-symmetric problems (Chow and Saad 1997, Benzi,
Haws, and Tuma 2000) has indicated that different styles of incomplete factorization may be more effective
for these classes of problems. This suggests that future work on fine-grained preconditioners should include
recent developments in fine-grained factorizations when possible. It would be also helpful to compare the
performance of various solvers, such as Bi-CGSTAB and TFQMR, with the preconditioning factors that are
generated by the FGPILU algorithm. Another avenue for future exploration includes expanding the exper-
imentation conducted with respect to various fault tolerance techniques. In particular, the checkpointing
scheme proposed here could be further analyzed in an attempt to optimize the amount of computational
overhead induced as opposed to the increase in convergence rate.

ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office of Scientific Research under the AFOSR award
FA9550-12-1-0476, by the U.S. Department of Energy (DOE), Office of Advanced Scientific Computing
Research Exascale Computing Project, under the grant DE-SC-0016564 through the Ames Laboratory,
operated by Iowa State University under contract No. DE-AC00-07CH11358, by the U.S. Department of
Defense High Performance Computing Modernization Program, through a HASI grant, and through the
ILIR/IAR program at the Naval Surface Warfare Center - Dahlgren Division. This work was also supported
by the Turing high performance computing cluster at Old Dominion University.

REFERENCES

Addou, A., and A. Benahmed. 2005. “Parallel synchronous algorithm for nonlinear fixed point problems”.
International Journal of Mathematics and Mathematical Sciences vol. 2005 (19), pp. 3175–3183.

Anzt, H., E. Chow, and J. Dongarra. 2015. “Iterative sparse triangular solves for preconditioning”. In Euro-
pean Conference on Parallel Processing, pp. 650–661. Springer.

Anzt, H., E. Chow, J. Saak, and J. Dongarra. 2016. “Updating incomplete factorization preconditioners for
model order reduction.”. Numerical Algorithms vol. 73 (3), pp. 611–630.

Anzt, H., J. Dongarra, and E. S. Quintana-Ortí. 2015. “Tuning stationary iterative solvers for fault re-
silience”. In Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, pp. 1. ACM.

Asanovic, K., R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer, D. Patterson, W. Plishker, J. Shalf,
S. Williams et al. 2006. “The landscape of parallel computing research: A view from Berkeley”. Techni-



Coleman and Sosonkina

cal report, Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley.

Baudet, G. M. 1978. “Asynchronous iterative methods for multiprocessors”. Journal of the ACM
(JACM) vol. 25 (2), pp. 226–244.

Benahmed, A. 2007. “A convergence result for asynchronous algorithms and applications”. Proyecciones
(Antofagasta) vol. 26 (2), pp. 219–236.

Benzi, M. 2002. “Preconditioning techniques for large linear systems: a survey”. Journal of computational
Physics vol. 182 (2), pp. 418–477.

Benzi, M., J. C. Haws, and M. Tuma. 2000. “Preconditioning highly indefinite and nonsymmetric matrices”.
SIAM Journal on Scientific Computing vol. 22 (4), pp. 1333–1353.

Bertsekas, D. P., and J. N. Tsitsiklis. 1989. Parallel and distributed computation: numerical methods, Vol-
ume 23. Prentice hall Englewood Cliffs, NJ.

Bridges, P., K. Ferreira, M. Heroux, and M. Hoemmen. 2012. “Fault-tolerant linear solvers via selective
reliability”. arXiv preprint arXiv:1206.1390.

Cappello, F., A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. 2009. “Toward exascale resilience”. The
International Journal of High Performance Computing Applications vol. 23 (4), pp. 374–388.

Cappello, F., A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. 2014. “Toward exascale resilience: 2014
update”. Supercomputing frontiers and innovations vol. 1 (1).

Chow, E., H. Anzt, and J. Dongarra. 2015. “Asynchronous iterative algorithm for computing incomplete
factorizations on GPUs”. In International Conference on High Performance Computing, pp. 1–16.
Springer.

Chow, E., and A. Patel. 2015. “Fine-grained parallel incomplete LU factorization”. SIAM journal on Scien-
tific Computing vol. 37 (2), pp. C169–C193.

Chow, E., and Y. Saad. 1997. “Experimental study of ILU preconditioners for indefinite matrices”. Journal
of Computational and Applied Mathematics vol. 86 (2), pp. 387–414.

Coleman, E., A. Jamal, M. Baboulin, A. Khabou, and M. Sosonkina. 2017. “A Comparison and Analysis
of Soft-Fault Error Models using FGMRES and ARMS RBT”. In Proceedings of the 12th International
Conference on Parallel Processing and Applied Mathematics. ACM.

Coleman, E., and M. Sosonkina. 2016. “Evaluating a Persistent Soft Fault Model on Preconditioned Iterative
Methods”. In Proceedings of the 22nd annual International Conference on Parallel and Distributed
Processing Techniques and Applications.

Coleman, E., and M. Sosonkina. 2017. “Fault Tolerance for Fine-Grained Iterative Methods”. In Proceedings
of the 7th annual Virginia Modeling, Simulation, and Analysis Center Capstone Conference. Virginia
Modeling, Simulation, and Analysis Center.

Coleman, E., M. Sosonkina, and E. Chow. 2017. “Fault Tolerant Variants of the Fine-Grained Parallel In-
complete LU Factorization”. In Proceedings of the 2017 Spring Simulation Multiconference. Society for
Computer Simulation International.

Elliott, J., M. Hoemmen, and F. Mueller. 2014. “Evaluating the impact of SDC on the GMRES iterative
solver”. In Parallel and Distributed Processing Symposium, 2014 IEEE 28th International, pp. 1193–
1202. IEEE.

Elliott, J., M. Hoemmen, and F. Mueller. 2015. “A Numerical Soft Fault Model for Iterative Linear Solvers”.
In Proceedings of the 24nd International Symposium on High-Performance Parallel and Distributed
Computing.



Coleman and Sosonkina

Frommer, A., and D. B. Szyld. 2000. “On asynchronous iterations”. Journal of computational and applied
mathematics vol. 123 (1), pp. 201–216.

Geist, A., and R. Lucas. 2009. “Major computer science challenges at exascale”. International Journal of
High Performance Computing Applications.

Hoemmen, M., and M. Heroux. 2011. “Fault-tolerant iterative methods via selective reliability”. In Proceed-
ings of the 2011 International Conference for High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society, Volume 3, pp. 9. Citeseer.

Innovative Computing Lab 2015. “Software distribution of MAGMA”. http://icl.cs.utk.edu/magma/.

Ortega, J. M., and W. C. Rheinboldt. 2000. Iterative solution of nonlinear equations in several variables.
SIAM.

Saad, Y. 2003. Iterative methods for sparse linear systems. SIAM.

Saad, Y., and B. Suchomel. 2002. “ARMS: An algebraic recursive multilevel solver for general sparse linear
systems”. Numerical linear algebra with applications vol. 9 (5), pp. 359–378.

Sao, P., and R. Vuduc. 2013. “Self-stabilizing iterative solvers”. In Proceedings of the Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems, pp. 4. ACM.

Snir, M., R. Wisniewski, J. Abraham, S. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson
et al. 2014. “Addressing failures in exascale computing”. International Journal of High Performance
Computing Applications.

Stoyanov, M., and C. Webster. 2015. “Numerical analysis of fixed point algorithms in the presence of hard-
ware faults”. SIAM Journal on Scientific Computing vol. 37 (5), pp. C532–C553.

AUTHOR BIOGRAPHIES

EVAN COLEMAN is a lead scientist with the Naval Surface Warfare Center Dahlgren Division. He holds
an MS in Mathematics from Syracuse University and is working on a PhD in Modeling and Simulation from
Old Dominion University. His email address is ecole028@odu.edu.

MASHA SOSONKINA is a Professor of Modeling, Simulation and Visualization Engineering at Old Do-
minion University. Her research interests include high-performance computing, large-scale simulations,
parallel numerical algorithms, and performance analysis. Her email address is msosonki@odu.edu.

http://icl.cs.utk.edu/magma/
mailto://ecole028@odu.edu
mailto://msosonki@odu.edu

	Introduction
	Related Work
	Fixed Point Iteration
	Fine-Grained Parallel Incomplete LU Factorization
	Convergence of the FGPILU Factorization
	Improving the Convergence of the FGPILU Algorithm

	Numerical Results
	Fault Model
	Convergence of the FGPILU fixed point iteration and associated Krylov solver
	Resilience of the FGPILU fixed point iteration

	Conclusion & Future Work

